Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the problem [tex]\(\left(6.31 \times 10^6\right)+\left(5.25 \times 10^6\right)\)[/tex], follow these steps:
1. Identify the given values: We have two numbers in scientific notation:
[tex]\[ a = 6.31 \times 10^6 \][/tex]
[tex]\[ b = 5.25 \times 10^6 \][/tex]
2. Add the numbers directly since the exponents (both are [tex]\(10^6\)[/tex]) are the same. This means we simply add the coefficients (6.31 and 5.25):
[tex]\[ a + b = 6.31 \times 10^6 + 5.25 \times 10^6 \][/tex]
[tex]\[ = (6.31 + 5.25) \times 10^6 \][/tex]
3. Calculate the sum of the coefficients:
[tex]\[ 6.31 + 5.25 = 11.56 \][/tex]
4. Combine the result with the common exponent:
[tex]\[ (6.31 + 5.25) \times 10^6 = 11.56 \times 10^6 \][/tex]
5. Convert the result to proper scientific notation:
Scientific notation requires that the coefficient (the number before the exponent) is between 1 and 10. Here, 11.56 needs to be adjusted:
[tex]\[ 11.56 \times 10^6 = 1.156 \times 10^7 \][/tex]
6. Round to two significant figures:
[tex]\[ 1.156 \times 10^7 \approx 1.16 \times 10^7 \][/tex]
Hence, the result of [tex]\(\left(6.31 \times 10^6\right)+\left(5.25 \times 10^6\right)\)[/tex] in scientific notation is:
[tex]\[ 1.16 \times 10^7 \][/tex]
So, [tex]\(\left(6.31 \times 10^6\right)+\left(5.25 \times 10^6\right) = 1.16 \times 10^7\)[/tex].
1. Identify the given values: We have two numbers in scientific notation:
[tex]\[ a = 6.31 \times 10^6 \][/tex]
[tex]\[ b = 5.25 \times 10^6 \][/tex]
2. Add the numbers directly since the exponents (both are [tex]\(10^6\)[/tex]) are the same. This means we simply add the coefficients (6.31 and 5.25):
[tex]\[ a + b = 6.31 \times 10^6 + 5.25 \times 10^6 \][/tex]
[tex]\[ = (6.31 + 5.25) \times 10^6 \][/tex]
3. Calculate the sum of the coefficients:
[tex]\[ 6.31 + 5.25 = 11.56 \][/tex]
4. Combine the result with the common exponent:
[tex]\[ (6.31 + 5.25) \times 10^6 = 11.56 \times 10^6 \][/tex]
5. Convert the result to proper scientific notation:
Scientific notation requires that the coefficient (the number before the exponent) is between 1 and 10. Here, 11.56 needs to be adjusted:
[tex]\[ 11.56 \times 10^6 = 1.156 \times 10^7 \][/tex]
6. Round to two significant figures:
[tex]\[ 1.156 \times 10^7 \approx 1.16 \times 10^7 \][/tex]
Hence, the result of [tex]\(\left(6.31 \times 10^6\right)+\left(5.25 \times 10^6\right)\)[/tex] in scientific notation is:
[tex]\[ 1.16 \times 10^7 \][/tex]
So, [tex]\(\left(6.31 \times 10^6\right)+\left(5.25 \times 10^6\right) = 1.16 \times 10^7\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.