Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To simplify the given expressions, let's break them down step-by-step.
### Simplifying [tex]\(\frac{11}{3(x-5)} - \frac{x+1}{3x}\)[/tex]
1. Find a common denominator:
For the fractions [tex]\(\frac{11}{3(x-5)}\)[/tex] and [tex]\(\frac{x+1}{3x}\)[/tex], the common denominator is [tex]\(3x(x-5)\)[/tex].
2. Rewrite each fraction with the common denominator:
[tex]\[ \frac{11}{3(x-5)} = \frac{11 \cdot x}{3x(x-5)} = \frac{11x}{3x(x-5)} \][/tex]
[tex]\[ \frac{x+1}{3x} = \frac{(x+1)(x-5)}{3x(x-5)} = \frac{x^2 - 5x + x - 5}{3x(x-5)} = \frac{x^2 - 4x - 5}{3x(x-5)} \][/tex]
3. Subtract the fractions:
[tex]\[ \frac{11x}{3x(x-5)} - \frac{x^2 - 4x - 5}{3x(x-5)} = \frac{11x - (x^2 - 4x - 5)}{3x(x-5)} \][/tex]
4. Simplify the numerator:
[tex]\[ 11x - (x^2 - 4x - 5) = 11x - x^2 + 4x + 5 = -x^2 + 15x + 5 \][/tex]
5. Write the final simplified expression:
[tex]\[ \frac{-x^2 + 15x + 5}{3x(x-5)} \][/tex]
### Simplifying [tex]\(\frac{-x^2 + 15x + 5}{3x^2 + [?]x}\)[/tex]
Given the missing term in the denominator, we assume it is zero as it is not specified:
1. Rewrite the denominator:
[tex]\[ 3x^2 + [?]x \Rightarrow 3x^2 + 0x = 3x^2 \][/tex]
2. Write the fraction with the simplified denominator:
[tex]\[ \frac{-x^2 + 15x + 5}{3x^2} \][/tex]
Therefore, the simplifications provide us with the following results:
### Final Simplified Expressions
1. The simplified form of [tex]\(\frac{11}{3(x-5)} - \frac{x+1}{3x}\)[/tex] is:
[tex]\[ \frac{-x^2 + 15x + 5}{3x(x-5)} \][/tex]
2. The simplified form of [tex]\(\frac{-x^2 + 15x + 5}{3x^2 + [?]x}\)[/tex] is:
[tex]\[ \frac{-x^2 + 15x + 5}{3x^2} \][/tex]
Both of these results match the expressions simplified above.
### Simplifying [tex]\(\frac{11}{3(x-5)} - \frac{x+1}{3x}\)[/tex]
1. Find a common denominator:
For the fractions [tex]\(\frac{11}{3(x-5)}\)[/tex] and [tex]\(\frac{x+1}{3x}\)[/tex], the common denominator is [tex]\(3x(x-5)\)[/tex].
2. Rewrite each fraction with the common denominator:
[tex]\[ \frac{11}{3(x-5)} = \frac{11 \cdot x}{3x(x-5)} = \frac{11x}{3x(x-5)} \][/tex]
[tex]\[ \frac{x+1}{3x} = \frac{(x+1)(x-5)}{3x(x-5)} = \frac{x^2 - 5x + x - 5}{3x(x-5)} = \frac{x^2 - 4x - 5}{3x(x-5)} \][/tex]
3. Subtract the fractions:
[tex]\[ \frac{11x}{3x(x-5)} - \frac{x^2 - 4x - 5}{3x(x-5)} = \frac{11x - (x^2 - 4x - 5)}{3x(x-5)} \][/tex]
4. Simplify the numerator:
[tex]\[ 11x - (x^2 - 4x - 5) = 11x - x^2 + 4x + 5 = -x^2 + 15x + 5 \][/tex]
5. Write the final simplified expression:
[tex]\[ \frac{-x^2 + 15x + 5}{3x(x-5)} \][/tex]
### Simplifying [tex]\(\frac{-x^2 + 15x + 5}{3x^2 + [?]x}\)[/tex]
Given the missing term in the denominator, we assume it is zero as it is not specified:
1. Rewrite the denominator:
[tex]\[ 3x^2 + [?]x \Rightarrow 3x^2 + 0x = 3x^2 \][/tex]
2. Write the fraction with the simplified denominator:
[tex]\[ \frac{-x^2 + 15x + 5}{3x^2} \][/tex]
Therefore, the simplifications provide us with the following results:
### Final Simplified Expressions
1. The simplified form of [tex]\(\frac{11}{3(x-5)} - \frac{x+1}{3x}\)[/tex] is:
[tex]\[ \frac{-x^2 + 15x + 5}{3x(x-5)} \][/tex]
2. The simplified form of [tex]\(\frac{-x^2 + 15x + 5}{3x^2 + [?]x}\)[/tex] is:
[tex]\[ \frac{-x^2 + 15x + 5}{3x^2} \][/tex]
Both of these results match the expressions simplified above.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.