Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the equation of a parabola given its vertex and focus, we use the vertex form equation for a parabola. Since the focus and vertex are given, we'll determine whether the parabola opens upwards, downwards, left, or right, and then fit it into the standard form.
Given:
- Vertex [tex]\( V = (2, -1) \)[/tex]
- Focus [tex]\( F = (2, 3) \)[/tex]
### Step-by-Step Solution:
1. Determine the orientation of the parabola:
- The vertex and the focus have the same [tex]\( x \)[/tex]-coordinate ([tex]\(2\)[/tex]).
- The [tex]\( y \)[/tex]-coordinate of the vertex is [tex]\(-1\)[/tex], and the [tex]\( y \)[/tex]-coordinate of the focus is [tex]\(3\)[/tex].
- Therefore, the vertex is below the focus, indicating that the parabola opens upwards.
2. Determine the distance [tex]\( p \)[/tex] (the focal length):
[tex]\( p \)[/tex] is the distance from the vertex to the focus along the axis of symmetry.
[tex]\[ p = \text{focus}_y - \text{vertex}_y = 3 - (-1) = 3 + 1 = 4 \][/tex]
3. Write the equation of the parabola:
The vertex form of a parabola that opens upwards is:
[tex]\[ (x - h)^2 = 4p(y - k) \][/tex]
Here, [tex]\((h, k)\)[/tex] is the vertex of the parabola.
Substituting [tex]\( h = 2 \)[/tex], [tex]\( k = -1 \)[/tex], and [tex]\( p = 4 \)[/tex]:
[tex]\[ (x - 2)^2 = 4 \cdot 4(y + 1) \][/tex]
[tex]\[ (x - 2)^2 = 16(y + 1) \][/tex]
4. Match the equation with the given options:
A. [tex]\( (x - 2)^2 = 16(y + 1) \)[/tex]
B. [tex]\( (x - 2)^2 = 4(y + 1) \)[/tex]
C. [tex]\( (x - 2)^2 = -16(y - 1) \)[/tex]
D. [tex]\( (x - 2) = 16(y + 1)^2 \)[/tex]
The equation derived, [tex]\( (x - 2)^2 = 16(y + 1) \)[/tex], matches with option A.
Therefore, the correct answer is
[tex]\[ \boxed{A} \][/tex]
Given:
- Vertex [tex]\( V = (2, -1) \)[/tex]
- Focus [tex]\( F = (2, 3) \)[/tex]
### Step-by-Step Solution:
1. Determine the orientation of the parabola:
- The vertex and the focus have the same [tex]\( x \)[/tex]-coordinate ([tex]\(2\)[/tex]).
- The [tex]\( y \)[/tex]-coordinate of the vertex is [tex]\(-1\)[/tex], and the [tex]\( y \)[/tex]-coordinate of the focus is [tex]\(3\)[/tex].
- Therefore, the vertex is below the focus, indicating that the parabola opens upwards.
2. Determine the distance [tex]\( p \)[/tex] (the focal length):
[tex]\( p \)[/tex] is the distance from the vertex to the focus along the axis of symmetry.
[tex]\[ p = \text{focus}_y - \text{vertex}_y = 3 - (-1) = 3 + 1 = 4 \][/tex]
3. Write the equation of the parabola:
The vertex form of a parabola that opens upwards is:
[tex]\[ (x - h)^2 = 4p(y - k) \][/tex]
Here, [tex]\((h, k)\)[/tex] is the vertex of the parabola.
Substituting [tex]\( h = 2 \)[/tex], [tex]\( k = -1 \)[/tex], and [tex]\( p = 4 \)[/tex]:
[tex]\[ (x - 2)^2 = 4 \cdot 4(y + 1) \][/tex]
[tex]\[ (x - 2)^2 = 16(y + 1) \][/tex]
4. Match the equation with the given options:
A. [tex]\( (x - 2)^2 = 16(y + 1) \)[/tex]
B. [tex]\( (x - 2)^2 = 4(y + 1) \)[/tex]
C. [tex]\( (x - 2)^2 = -16(y - 1) \)[/tex]
D. [tex]\( (x - 2) = 16(y + 1)^2 \)[/tex]
The equation derived, [tex]\( (x - 2)^2 = 16(y + 1) \)[/tex], matches with option A.
Therefore, the correct answer is
[tex]\[ \boxed{A} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.