At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To simplify the expression [tex]\(\frac{4x + 1}{x^2 - 4} - \frac{3}{x - 2}\)[/tex], let's go through the steps systematically.
1. Identify the denominators and factor:
We need a common denominator to subtract these fractions. Notice that:
[tex]\[ x^2 - 4 = (x - 2)(x + 2) \][/tex]
So, the first fraction is already over the denominator [tex]\((x - 2)(x + 2)\)[/tex], while the second fraction is over [tex]\((x - 2)\)[/tex].
2. Rewrite the second fraction to have the common denominator:
To subtract these fractions, the second fraction needs to be rewritten with the common denominator [tex]\((x - 2)(x + 2)\)[/tex]:
[tex]\[ \frac{3}{x - 2} = \frac{3 \cdot (x + 2)}{(x - 2)(x + 2)} = \frac{3(x + 2)}{(x - 2)(x + 2)} \][/tex]
3. Subtract the fractions:
Now that both fractions have a common denominator, we can rewrite the overall expression as a single fraction:
[tex]\[ \frac{4x + 1}{(x - 2)(x + 2)} - \frac{3(x + 2)}{(x - 2)(x + 2)} \][/tex]
Combine the numerators over the common denominator:
[tex]\[ \frac{(4x + 1) - 3(x + 2)}{(x - 2)(x + 2)} \][/tex]
4. Simplify the numerator:
Distribute [tex]\(3\)[/tex] in the second term and then combine like terms:
[tex]\[ (4x + 1) - 3(x + 2) = 4x + 1 - 3x - 6 \][/tex]
Combine the [tex]\(x\)[/tex] terms and the constants:
[tex]\[ 4x - 3x = x \][/tex]
[tex]\[ 1 - 6 = -5 \][/tex]
Therefore, the simplified numerator is:
[tex]\[ x - 5 \][/tex]
5. Combine the results:
Putting it all together, we have:
[tex]\[ \frac{x - 5}{(x - 2)(x + 2)} \][/tex]
Since [tex]\(x^2 - 4\)[/tex] is equivalent to [tex]\((x - 2)(x + 2)\)[/tex], we can write the final simplified fraction as:
[tex]\[ \frac{x - 5}{x^2 - 4} \][/tex]
So, the simplified form of the given expression is:
[tex]\[ \frac{x - 5}{x^2 - 4} \][/tex]
1. Identify the denominators and factor:
We need a common denominator to subtract these fractions. Notice that:
[tex]\[ x^2 - 4 = (x - 2)(x + 2) \][/tex]
So, the first fraction is already over the denominator [tex]\((x - 2)(x + 2)\)[/tex], while the second fraction is over [tex]\((x - 2)\)[/tex].
2. Rewrite the second fraction to have the common denominator:
To subtract these fractions, the second fraction needs to be rewritten with the common denominator [tex]\((x - 2)(x + 2)\)[/tex]:
[tex]\[ \frac{3}{x - 2} = \frac{3 \cdot (x + 2)}{(x - 2)(x + 2)} = \frac{3(x + 2)}{(x - 2)(x + 2)} \][/tex]
3. Subtract the fractions:
Now that both fractions have a common denominator, we can rewrite the overall expression as a single fraction:
[tex]\[ \frac{4x + 1}{(x - 2)(x + 2)} - \frac{3(x + 2)}{(x - 2)(x + 2)} \][/tex]
Combine the numerators over the common denominator:
[tex]\[ \frac{(4x + 1) - 3(x + 2)}{(x - 2)(x + 2)} \][/tex]
4. Simplify the numerator:
Distribute [tex]\(3\)[/tex] in the second term and then combine like terms:
[tex]\[ (4x + 1) - 3(x + 2) = 4x + 1 - 3x - 6 \][/tex]
Combine the [tex]\(x\)[/tex] terms and the constants:
[tex]\[ 4x - 3x = x \][/tex]
[tex]\[ 1 - 6 = -5 \][/tex]
Therefore, the simplified numerator is:
[tex]\[ x - 5 \][/tex]
5. Combine the results:
Putting it all together, we have:
[tex]\[ \frac{x - 5}{(x - 2)(x + 2)} \][/tex]
Since [tex]\(x^2 - 4\)[/tex] is equivalent to [tex]\((x - 2)(x + 2)\)[/tex], we can write the final simplified fraction as:
[tex]\[ \frac{x - 5}{x^2 - 4} \][/tex]
So, the simplified form of the given expression is:
[tex]\[ \frac{x - 5}{x^2 - 4} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.