Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine if [tex]\( x-3 \)[/tex] is a factor of the polynomial [tex]\( P(x) = x^3 - 7x^2 + 15x - 9 \)[/tex], we can use the Factor Theorem. According to the Factor Theorem, [tex]\( x-a \)[/tex] is a factor of [tex]\( P(x) \)[/tex] if and only if [tex]\( P(a) = 0 \)[/tex].
Here’s the step-by-step process to verify this:
1. Identify the value of [tex]\( a \)[/tex]:
Since we are checking if [tex]\( x-3 \)[/tex] is a factor, [tex]\( a \)[/tex] is 3.
2. Substitute [tex]\( a = 3 \)[/tex] into the polynomial [tex]\( P(x) \)[/tex]:
We need to calculate [tex]\( P(3) \)[/tex].
[tex]\[ P(3) = (3)^3 - 7(3)^2 + 15(3) - 9 \][/tex]
3. Compute [tex]\( P(3) \)[/tex]:
- [tex]\( 3^3 = 27 \)[/tex]
- [tex]\( 7(3^2) = 7(9) = 63 \)[/tex]
- [tex]\( 15(3) = 45 \)[/tex]
- Combining these, we get:
[tex]\[ P(3) = 27 - 63 + 45 - 9 \][/tex]
4. Simplify the expression:
[tex]\[ P(3) = 27 - 63 + 45 - 9 = (27 + 45 - 63 - 9) \][/tex]
[tex]\[ = 72 - 72 \][/tex]
[tex]\[ = 0 \][/tex]
5. Conclusion:
Since [tex]\( P(3) = 0 \)[/tex], according to the Factor Theorem, [tex]\( x-3 \)[/tex] is indeed a factor of the polynomial [tex]\( P(x) = x^3 - 7x^2 + 15x - 9 \)[/tex].
Therefore, the answer is:
A. True
Here’s the step-by-step process to verify this:
1. Identify the value of [tex]\( a \)[/tex]:
Since we are checking if [tex]\( x-3 \)[/tex] is a factor, [tex]\( a \)[/tex] is 3.
2. Substitute [tex]\( a = 3 \)[/tex] into the polynomial [tex]\( P(x) \)[/tex]:
We need to calculate [tex]\( P(3) \)[/tex].
[tex]\[ P(3) = (3)^3 - 7(3)^2 + 15(3) - 9 \][/tex]
3. Compute [tex]\( P(3) \)[/tex]:
- [tex]\( 3^3 = 27 \)[/tex]
- [tex]\( 7(3^2) = 7(9) = 63 \)[/tex]
- [tex]\( 15(3) = 45 \)[/tex]
- Combining these, we get:
[tex]\[ P(3) = 27 - 63 + 45 - 9 \][/tex]
4. Simplify the expression:
[tex]\[ P(3) = 27 - 63 + 45 - 9 = (27 + 45 - 63 - 9) \][/tex]
[tex]\[ = 72 - 72 \][/tex]
[tex]\[ = 0 \][/tex]
5. Conclusion:
Since [tex]\( P(3) = 0 \)[/tex], according to the Factor Theorem, [tex]\( x-3 \)[/tex] is indeed a factor of the polynomial [tex]\( P(x) = x^3 - 7x^2 + 15x - 9 \)[/tex].
Therefore, the answer is:
A. True
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.