Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To evaluate the expression [tex]\(-\frac{2}{3} \times 5 \frac{1}{6}\)[/tex], let's go through the correct steps:
### Step 1: Convert Mixed Number to Improper Fraction
First, we need to convert the mixed number [tex]\(5 \frac{1}{6}\)[/tex] into an improper fraction.
A mixed number [tex]\(a \frac{b}{c}\)[/tex] can be converted to an improper fraction as:
[tex]\[ a \frac{b}{c} = \frac{ac + b}{c} \][/tex]
For [tex]\(5 \frac{1}{6}\)[/tex]:
[tex]\[ 5 \frac{1}{6} = \frac{(5 \times 6) + 1}{6} = \frac{30 + 1}{6} = \frac{31}{6} \][/tex]
### Step 2: Multiply the Fractions
Now we need to multiply [tex]\(-\frac{2}{3}\)[/tex] by [tex]\(\frac{31}{6}\)[/tex]:
[tex]\[ -\frac{2}{3} \times \frac{31}{6} \][/tex]
Multiply the numerators and the denominators:
[tex]\[ -\frac{2 \times 31}{3 \times 6} = -\frac{62}{18} \][/tex]
### Step 3: Simplify the Fraction
To simplify [tex]\(-\frac{62}{18}\)[/tex], we find the greatest common divisor (GCD) of 62 and 18. The GCD is 2.
Divide the numerator and the denominator by 2:
[tex]\[ -\frac{62 \div 2}{18 \div 2} = -\frac{31}{9} \][/tex]
### Step 4: Convert to Mixed Number (if required)
In this case, we are left with [tex]\(-\frac{31}{9}\)[/tex] which is the improper fraction form. Since we want a final simplified form, we note that:
[tex]\[ -\frac{31}{9} \approx -3.444 \][/tex]
Given the context, the primary steps are complete, and the calculation simplifies:
Finally, the value is:
\2
Thus, Calvin made an error in his problem-solving approach. Specifically, he incorrectly broke up [tex]\(5 \frac{1}{6}\)[/tex] instead of converting it correctly into an improper fraction before proceeding with the multiplication.
### Step 1: Convert Mixed Number to Improper Fraction
First, we need to convert the mixed number [tex]\(5 \frac{1}{6}\)[/tex] into an improper fraction.
A mixed number [tex]\(a \frac{b}{c}\)[/tex] can be converted to an improper fraction as:
[tex]\[ a \frac{b}{c} = \frac{ac + b}{c} \][/tex]
For [tex]\(5 \frac{1}{6}\)[/tex]:
[tex]\[ 5 \frac{1}{6} = \frac{(5 \times 6) + 1}{6} = \frac{30 + 1}{6} = \frac{31}{6} \][/tex]
### Step 2: Multiply the Fractions
Now we need to multiply [tex]\(-\frac{2}{3}\)[/tex] by [tex]\(\frac{31}{6}\)[/tex]:
[tex]\[ -\frac{2}{3} \times \frac{31}{6} \][/tex]
Multiply the numerators and the denominators:
[tex]\[ -\frac{2 \times 31}{3 \times 6} = -\frac{62}{18} \][/tex]
### Step 3: Simplify the Fraction
To simplify [tex]\(-\frac{62}{18}\)[/tex], we find the greatest common divisor (GCD) of 62 and 18. The GCD is 2.
Divide the numerator and the denominator by 2:
[tex]\[ -\frac{62 \div 2}{18 \div 2} = -\frac{31}{9} \][/tex]
### Step 4: Convert to Mixed Number (if required)
In this case, we are left with [tex]\(-\frac{31}{9}\)[/tex] which is the improper fraction form. Since we want a final simplified form, we note that:
[tex]\[ -\frac{31}{9} \approx -3.444 \][/tex]
Given the context, the primary steps are complete, and the calculation simplifies:
Finally, the value is:
\2
Thus, Calvin made an error in his problem-solving approach. Specifically, he incorrectly broke up [tex]\(5 \frac{1}{6}\)[/tex] instead of converting it correctly into an improper fraction before proceeding with the multiplication.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.