At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the remainder when [tex]\( x^2 + 5 \)[/tex] is divided by [tex]\( x + 1 \)[/tex], we can use the process of polynomial long division.
1. Set up the division:
- Dividend (the polynomial to be divided): [tex]\( x^2 + 5 \)[/tex]
- Divisor (the polynomial we are dividing by): [tex]\( x + 1 \)[/tex]
2. Divide the leading term of the dividend by the leading term of the divisor:
[tex]\[ \frac{x^2}{x} = x \][/tex]
So, the first term in the quotient is [tex]\( x \)[/tex].
3. Multiply the entire divisor [tex]\( x + 1 \)[/tex] by this term [tex]\( x \)[/tex]:
[tex]\[ x \cdot (x + 1) = x^2 + x \][/tex]
4. Subtract this result from the original dividend:
[tex]\[ (x^2 + 5) - (x^2 + x) = (x^2 + 5) - x^2 - x = 5 - x \][/tex]
After this subtraction, the new polynomial is [tex]\( -x + 5 \)[/tex].
5. Divide the leading term of the new polynomial by the leading term of the divisor:
[tex]\[ \frac{-x}{x} = -1 \][/tex]
So, the next term in the quotient is [tex]\( -1 \)[/tex].
6. Multiply the entire divisor [tex]\( x + 1 \)[/tex] by this term [tex]\( -1 \)[/tex]:
[tex]\[ -1 \cdot (x + 1) = -x - 1 \][/tex]
7. Subtract this result from the new polynomial:
[tex]\[ (-x + 5) - (-x - 1) = (-x + 5) + x + 1 = 6 \][/tex]
After performing these steps, we end up with a quotient of [tex]\( x - 1 \)[/tex] and a remainder of [tex]\( 6 \)[/tex].
Therefore, the remainder when [tex]\( x^2 + 5 \)[/tex] is divided by [tex]\( x + 1 \)[/tex] is [tex]\( 6 \)[/tex].
1. Set up the division:
- Dividend (the polynomial to be divided): [tex]\( x^2 + 5 \)[/tex]
- Divisor (the polynomial we are dividing by): [tex]\( x + 1 \)[/tex]
2. Divide the leading term of the dividend by the leading term of the divisor:
[tex]\[ \frac{x^2}{x} = x \][/tex]
So, the first term in the quotient is [tex]\( x \)[/tex].
3. Multiply the entire divisor [tex]\( x + 1 \)[/tex] by this term [tex]\( x \)[/tex]:
[tex]\[ x \cdot (x + 1) = x^2 + x \][/tex]
4. Subtract this result from the original dividend:
[tex]\[ (x^2 + 5) - (x^2 + x) = (x^2 + 5) - x^2 - x = 5 - x \][/tex]
After this subtraction, the new polynomial is [tex]\( -x + 5 \)[/tex].
5. Divide the leading term of the new polynomial by the leading term of the divisor:
[tex]\[ \frac{-x}{x} = -1 \][/tex]
So, the next term in the quotient is [tex]\( -1 \)[/tex].
6. Multiply the entire divisor [tex]\( x + 1 \)[/tex] by this term [tex]\( -1 \)[/tex]:
[tex]\[ -1 \cdot (x + 1) = -x - 1 \][/tex]
7. Subtract this result from the new polynomial:
[tex]\[ (-x + 5) - (-x - 1) = (-x + 5) + x + 1 = 6 \][/tex]
After performing these steps, we end up with a quotient of [tex]\( x - 1 \)[/tex] and a remainder of [tex]\( 6 \)[/tex].
Therefore, the remainder when [tex]\( x^2 + 5 \)[/tex] is divided by [tex]\( x + 1 \)[/tex] is [tex]\( 6 \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.