Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine where the graph of the function [tex]\( F(x) = \frac{2}{x-2} \)[/tex] has a vertical asymptote, we need to identify the points where the denominator of the function is zero but the numerator is not zero. Vertical asymptotes occur at these points because the function becomes undefined as it approaches these values on the x-axis.
Let’s follow these steps:
1. Identify the denominator:
The denominator in the given function [tex]\( F(x) = \frac{2}{x-2} \)[/tex] is [tex]\( x - 2 \)[/tex].
2. Set the denominator equal to zero:
To find the vertical asymptote, set [tex]\( x - 2 = 0 \)[/tex].
3. Solve for [tex]\( x \)[/tex]:
Solving this equation:
[tex]\[ x - 2 = 0 \][/tex]
[tex]\[ x = 2 \][/tex]
Therefore, the graph of the function [tex]\( F(x) = \frac{2}{x-2} \)[/tex] has a vertical asymptote at [tex]\( x = 2 \)[/tex].
The correct answer is:
C. [tex]\( 2 \)[/tex]
Let’s follow these steps:
1. Identify the denominator:
The denominator in the given function [tex]\( F(x) = \frac{2}{x-2} \)[/tex] is [tex]\( x - 2 \)[/tex].
2. Set the denominator equal to zero:
To find the vertical asymptote, set [tex]\( x - 2 = 0 \)[/tex].
3. Solve for [tex]\( x \)[/tex]:
Solving this equation:
[tex]\[ x - 2 = 0 \][/tex]
[tex]\[ x = 2 \][/tex]
Therefore, the graph of the function [tex]\( F(x) = \frac{2}{x-2} \)[/tex] has a vertical asymptote at [tex]\( x = 2 \)[/tex].
The correct answer is:
C. [tex]\( 2 \)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.