Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To answer this question, we need to analyze the behavior of the function [tex]\( f(x) = \frac{2}{x-2} \)[/tex] when [tex]\( x \)[/tex] is close to 2. Specifically, what happens to [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches the value of 2.
The function [tex]\( f(x) = \frac{2}{x-2} \)[/tex] contains a denominator that gets very small as [tex]\( x \)[/tex] gets close to 2. This small denominator will significantly affect the value of the overall function. Let's consider each option to see if it makes sense given this behavior.
1. Option A: 2
- For [tex]\( f(x) \)[/tex] to be 2, we must solve the equation:
[tex]\[ \frac{2}{x-2} = 2 \][/tex]
Simplifying this gives:
[tex]\[ x - 2 = 1 \][/tex]
[tex]\[ x = 3 \][/tex]
However, 3 is not close to 2. Thus, this option could not be a value of [tex]\( f(x) \)[/tex] when [tex]\( x \)[/tex] is close to 2.
2. Option B: -0.01
- For [tex]\( f(x) \)[/tex] to be -0.01, we must solve the equation:
[tex]\[ \frac{2}{x-2} = -0.01 \][/tex]
Simplifying this gives:
[tex]\[ x - 2 = -200 \][/tex]
[tex]\[ x = -198 \][/tex]
Again, -198 is not close to 2. Therefore, this option is also not feasible.
3. Option C: 10,000
- For [tex]\( f(x) \)[/tex] to be 10,000, we must solve the equation:
[tex]\[ \frac{2}{x-2} = 10,000 \][/tex]
Simplifying this gives:
[tex]\[ x - 2 = \frac{2}{10,000} \][/tex]
[tex]\[ x - 2 = 0.0002 \][/tex]
[tex]\[ x = 2.0002 \][/tex]
This value, 2.0002, is very close to 2. Therefore, it is plausible that [tex]\( f(x) \)[/tex] could be 10,000 when [tex]\( x \)[/tex] is close to 2.
4. Option D: 0.01
- For [tex]\( f(x) \)[/tex] to be 0.01, we must solve the equation:
[tex]\[ \frac{2}{x-2} = 0.01 \][/tex]
Simplifying this gives:
[tex]\[ x - 2 = 200 \][/tex]
[tex]\[ x = 202 \][/tex]
This value, 202, is not close to 2. Hence, this option is not reasonable.
Given this analysis, the most plausible value of [tex]\( f(x) \)[/tex] when [tex]\( x \)[/tex] is close to 2 is given by Option C: 10,000.
The function [tex]\( f(x) = \frac{2}{x-2} \)[/tex] contains a denominator that gets very small as [tex]\( x \)[/tex] gets close to 2. This small denominator will significantly affect the value of the overall function. Let's consider each option to see if it makes sense given this behavior.
1. Option A: 2
- For [tex]\( f(x) \)[/tex] to be 2, we must solve the equation:
[tex]\[ \frac{2}{x-2} = 2 \][/tex]
Simplifying this gives:
[tex]\[ x - 2 = 1 \][/tex]
[tex]\[ x = 3 \][/tex]
However, 3 is not close to 2. Thus, this option could not be a value of [tex]\( f(x) \)[/tex] when [tex]\( x \)[/tex] is close to 2.
2. Option B: -0.01
- For [tex]\( f(x) \)[/tex] to be -0.01, we must solve the equation:
[tex]\[ \frac{2}{x-2} = -0.01 \][/tex]
Simplifying this gives:
[tex]\[ x - 2 = -200 \][/tex]
[tex]\[ x = -198 \][/tex]
Again, -198 is not close to 2. Therefore, this option is also not feasible.
3. Option C: 10,000
- For [tex]\( f(x) \)[/tex] to be 10,000, we must solve the equation:
[tex]\[ \frac{2}{x-2} = 10,000 \][/tex]
Simplifying this gives:
[tex]\[ x - 2 = \frac{2}{10,000} \][/tex]
[tex]\[ x - 2 = 0.0002 \][/tex]
[tex]\[ x = 2.0002 \][/tex]
This value, 2.0002, is very close to 2. Therefore, it is plausible that [tex]\( f(x) \)[/tex] could be 10,000 when [tex]\( x \)[/tex] is close to 2.
4. Option D: 0.01
- For [tex]\( f(x) \)[/tex] to be 0.01, we must solve the equation:
[tex]\[ \frac{2}{x-2} = 0.01 \][/tex]
Simplifying this gives:
[tex]\[ x - 2 = 200 \][/tex]
[tex]\[ x = 202 \][/tex]
This value, 202, is not close to 2. Hence, this option is not reasonable.
Given this analysis, the most plausible value of [tex]\( f(x) \)[/tex] when [tex]\( x \)[/tex] is close to 2 is given by Option C: 10,000.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.