Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the equation [tex]\(128 \cdot w^7 = 1\)[/tex], we proceed as follows:
1. Isolate [tex]\( w^7 \)[/tex]:
[tex]\[ 128 \cdot w^7 = 1 \][/tex]
Divide both sides by 128:
[tex]\[ w^7 = \frac{1}{128} \][/tex]
2. Simplify the right-hand side:
Recall that [tex]\(128 = 2^7\)[/tex], so we can write:
[tex]\[ w^7 = \frac{1}{2^7} = 2^{-7} \][/tex]
3. Take the seventh root of both sides:
We need to find the seventh roots of [tex]\(\frac{1}{128}\)[/tex] or [tex]\(2^{-7}\)[/tex]. The principal seventh root can be written as:
[tex]\[ w = (2^{-7})^{\frac{1}{7}} = 2^{-1} = \frac{1}{2} \][/tex]
4. Find all seventh roots:
Since [tex]\( w^7 = \frac{1}{128} \)[/tex] is a complex number, we use the fact that the roots of a complex number [tex]\(z\)[/tex] can be found using the form:
[tex]\[ w_k = r^{\frac{1}{n}} \left( \cos\left(\frac{\theta + 2k\pi}{n}\right) + i \sin\left(\frac{\theta + 2k\pi}{n}\right) \right) \][/tex]
for [tex]\( k = 0, 1, 2, \ldots, 6 \)[/tex], where [tex]\(r\)[/tex] is the magnitude of the complex number and [tex]\(\theta\)[/tex] is the argument (angle).
For [tex]\(\frac{1}{128}\)[/tex], which has a magnitude of [tex]\(\left| \frac{1}{128} \right| = \frac{1}{128}\)[/tex], and an argument [tex]\(\theta = 0 \)[/tex] (since [tex]\(\frac{1}{128}\)[/tex] is on the real axis), the roots are:
[tex]\[ w_k = \left(\frac{1}{128}\right)^{\frac{1}{7}} \left( \cos\left(\frac{2k\pi}{7}\right) + i \sin\left(\frac{2k\pi}{7}\right) \right) \][/tex]
Simplifying the magnitude part gives us the principal root:
[tex]\[ (2^{-7})^{\frac{1}{7}} = 2^{-1} = \frac{1}{2} \][/tex]
Combining the magnitude and the angle for each [tex]\( k \)[/tex], we get:
[tex]\[ w_k = \frac{1}{2} \left( \cos\left(\frac{2k\pi}{7}\right) + i \sin\left(\frac{2k\pi}{7}\right) \right) \][/tex]
The seven complex roots can then be listed explicitly by replacing [tex]\( k \)[/tex] from 0 to 6 and evaluating the trigonometric functions:
- For [tex]\( k = 0 \)[/tex]:
[tex]\[ w_0 = \frac{1}{2} \left( \cos\left(0\right) + i \sin\left(0\right) \right) = \frac{1}{2} \left(1 + 0i\right) = \frac{1}{2} \][/tex]
- For [tex]\( k = 1 \)[/tex]:
[tex]\[ w_1 = \frac{1}{2} \left( \cos\left(\frac{2\pi}{7}\right) + i \sin\left(\frac{2\pi}{7}\right) \right) \][/tex]
- For [tex]\( k = 2 \)[/tex]:
[tex]\[ w_2 = \frac{1}{2} \left( \cos\left(\frac{4\pi}{7}\right) + i \sin\left(\frac{4\pi}{7}\right) \right) \][/tex]
- For [tex]\( k = 3 \)[/tex]:
[tex]\[ w_3 = \frac{1}{2} \left( \cos\left(\frac{6\pi}{7}\right) + i \sin\left(\frac{6\pi}{7}\right) \right) \][/tex]
- For [tex]\( k = 4 \)[/tex]:
[tex]\[ w_4 = \frac{1}{2} \left( \cos\left(\frac{8\pi}{7}\right) + i \sin\left(\frac{8\pi}{7}\right) \right) \][/tex]
- For [tex]\( k = 5 \)[/tex]:
[tex]\[ w_5 = \frac{1}{2} \left( \cos\left(\frac{10\pi}{7}\right) + i \sin\left(\frac{10\pi}{7}\right) \right) \][/tex]
- For [tex]\( k = 6 \)[/tex]:
[tex]\[ w_6 = \frac{1}{2} \left( \cos\left(\frac{12\pi}{7}\right) + i \sin\left(\frac{12\pi}{7}\right) \right) \][/tex]
Combining these, the seven roots of the equation [tex]\(128 w^7 = 1\)[/tex] in simplified form are:
[tex]\[ \boxed{\left\{ \frac{1}{2}, \frac{1}{2} \left( \cos\left(\frac{2\pi}{7}\right) + i \sin\left(\frac{2\pi}{7}\right) \right), \frac{1}{2} \left( \cos\left(\frac{4\pi}{7}\right) + i \sin\left(\frac{4\pi}{7}\right) \right), \frac{1}{2} \left( \cos\left(\frac{6\pi}{7}\right) + i \sin\left(\frac{6\pi}{7}\right) \right), \frac{1}{2} \left( \cos\left(\frac{8\pi}{7}\right) + i \sin\left(\frac{8\pi}{7}\right) \right), \frac{1}{2} \left( \cos\left(\frac{10\pi}{7}\right) + i \sin\left(\frac{10\pi}{7}\right) \right), \frac{1}{2} \left( \cos\left(\frac{12\pi}{7}\right) + i \sin\left(\frac{12\pi}{7}\right) \right) \right\} } \][/tex]
1. Isolate [tex]\( w^7 \)[/tex]:
[tex]\[ 128 \cdot w^7 = 1 \][/tex]
Divide both sides by 128:
[tex]\[ w^7 = \frac{1}{128} \][/tex]
2. Simplify the right-hand side:
Recall that [tex]\(128 = 2^7\)[/tex], so we can write:
[tex]\[ w^7 = \frac{1}{2^7} = 2^{-7} \][/tex]
3. Take the seventh root of both sides:
We need to find the seventh roots of [tex]\(\frac{1}{128}\)[/tex] or [tex]\(2^{-7}\)[/tex]. The principal seventh root can be written as:
[tex]\[ w = (2^{-7})^{\frac{1}{7}} = 2^{-1} = \frac{1}{2} \][/tex]
4. Find all seventh roots:
Since [tex]\( w^7 = \frac{1}{128} \)[/tex] is a complex number, we use the fact that the roots of a complex number [tex]\(z\)[/tex] can be found using the form:
[tex]\[ w_k = r^{\frac{1}{n}} \left( \cos\left(\frac{\theta + 2k\pi}{n}\right) + i \sin\left(\frac{\theta + 2k\pi}{n}\right) \right) \][/tex]
for [tex]\( k = 0, 1, 2, \ldots, 6 \)[/tex], where [tex]\(r\)[/tex] is the magnitude of the complex number and [tex]\(\theta\)[/tex] is the argument (angle).
For [tex]\(\frac{1}{128}\)[/tex], which has a magnitude of [tex]\(\left| \frac{1}{128} \right| = \frac{1}{128}\)[/tex], and an argument [tex]\(\theta = 0 \)[/tex] (since [tex]\(\frac{1}{128}\)[/tex] is on the real axis), the roots are:
[tex]\[ w_k = \left(\frac{1}{128}\right)^{\frac{1}{7}} \left( \cos\left(\frac{2k\pi}{7}\right) + i \sin\left(\frac{2k\pi}{7}\right) \right) \][/tex]
Simplifying the magnitude part gives us the principal root:
[tex]\[ (2^{-7})^{\frac{1}{7}} = 2^{-1} = \frac{1}{2} \][/tex]
Combining the magnitude and the angle for each [tex]\( k \)[/tex], we get:
[tex]\[ w_k = \frac{1}{2} \left( \cos\left(\frac{2k\pi}{7}\right) + i \sin\left(\frac{2k\pi}{7}\right) \right) \][/tex]
The seven complex roots can then be listed explicitly by replacing [tex]\( k \)[/tex] from 0 to 6 and evaluating the trigonometric functions:
- For [tex]\( k = 0 \)[/tex]:
[tex]\[ w_0 = \frac{1}{2} \left( \cos\left(0\right) + i \sin\left(0\right) \right) = \frac{1}{2} \left(1 + 0i\right) = \frac{1}{2} \][/tex]
- For [tex]\( k = 1 \)[/tex]:
[tex]\[ w_1 = \frac{1}{2} \left( \cos\left(\frac{2\pi}{7}\right) + i \sin\left(\frac{2\pi}{7}\right) \right) \][/tex]
- For [tex]\( k = 2 \)[/tex]:
[tex]\[ w_2 = \frac{1}{2} \left( \cos\left(\frac{4\pi}{7}\right) + i \sin\left(\frac{4\pi}{7}\right) \right) \][/tex]
- For [tex]\( k = 3 \)[/tex]:
[tex]\[ w_3 = \frac{1}{2} \left( \cos\left(\frac{6\pi}{7}\right) + i \sin\left(\frac{6\pi}{7}\right) \right) \][/tex]
- For [tex]\( k = 4 \)[/tex]:
[tex]\[ w_4 = \frac{1}{2} \left( \cos\left(\frac{8\pi}{7}\right) + i \sin\left(\frac{8\pi}{7}\right) \right) \][/tex]
- For [tex]\( k = 5 \)[/tex]:
[tex]\[ w_5 = \frac{1}{2} \left( \cos\left(\frac{10\pi}{7}\right) + i \sin\left(\frac{10\pi}{7}\right) \right) \][/tex]
- For [tex]\( k = 6 \)[/tex]:
[tex]\[ w_6 = \frac{1}{2} \left( \cos\left(\frac{12\pi}{7}\right) + i \sin\left(\frac{12\pi}{7}\right) \right) \][/tex]
Combining these, the seven roots of the equation [tex]\(128 w^7 = 1\)[/tex] in simplified form are:
[tex]\[ \boxed{\left\{ \frac{1}{2}, \frac{1}{2} \left( \cos\left(\frac{2\pi}{7}\right) + i \sin\left(\frac{2\pi}{7}\right) \right), \frac{1}{2} \left( \cos\left(\frac{4\pi}{7}\right) + i \sin\left(\frac{4\pi}{7}\right) \right), \frac{1}{2} \left( \cos\left(\frac{6\pi}{7}\right) + i \sin\left(\frac{6\pi}{7}\right) \right), \frac{1}{2} \left( \cos\left(\frac{8\pi}{7}\right) + i \sin\left(\frac{8\pi}{7}\right) \right), \frac{1}{2} \left( \cos\left(\frac{10\pi}{7}\right) + i \sin\left(\frac{10\pi}{7}\right) \right), \frac{1}{2} \left( \cos\left(\frac{12\pi}{7}\right) + i \sin\left(\frac{12\pi}{7}\right) \right) \right\} } \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.