Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the equation [tex]\(\sin\left(\frac{\theta}{2}\right) = -\frac{1}{2}\)[/tex] over all real values of [tex]\(\theta\)[/tex], we proceed as follows:
1. Understand the basic trigonometric equation:
We start with [tex]\(\sin x = -\frac{1}{2}\)[/tex]. We know that sine is negative in the third and fourth quadrants. The reference angle for [tex]\(\sin x = \frac{1}{2}\)[/tex] is [tex]\(\frac{\pi}{6}\)[/tex], thus the solutions for [tex]\(\sin x = -\frac{1}{2}\)[/tex] are:
[tex]\[ x = -\frac{\pi}{6} + 2k\pi \quad \text{and} \quad x = \frac{7\pi}{6} + 2k\pi \][/tex]
for any integer [tex]\(k\)[/tex].
2. Apply the solutions to [tex]\(\sin\left(\frac{\theta}{2}\right)\)[/tex]:
Let [tex]\(x = \frac{\theta}{2}\)[/tex]. Substitute [tex]\(x\)[/tex] with [tex]\(\frac{\theta}{2}\)[/tex] in the general solutions:
[tex]\[ \frac{\theta}{2} = -\frac{\pi}{6} + 2k\pi \quad \text{and} \quad \frac{\theta}{2} = \frac{7\pi}{6} + 2k\pi \][/tex]
3. Solve for [tex]\(\theta\)[/tex]:
Multiply both sides of each equation by 2 to solve for [tex]\(\theta\)[/tex]:
[tex]\[ \theta = -\frac{\pi}{3} + 4k\pi \quad \text{and} \quad \theta = \frac{7\pi}{3} + 4k\pi \][/tex]
4. Rewrite the solutions:
Using [tex]\(n\)[/tex] as any integer (where [tex]\(n = k\)[/tex]):
[tex]\[ \theta = (-\frac{\pi}{3}) + 4n\pi \quad \text{and} \quad \theta = (\frac{7\pi}{3}) + 4n\pi \][/tex]
5. Additional equivalent form:
Noting that [tex]\(\frac{7\pi}{3}\)[/tex] can be expressed as [tex]\(\frac{4\pi}{3} + \pi\)[/tex], we get another commonly used form:
[tex]\[ \theta = (\frac{4\pi}{3}) + 4n\pi \][/tex]
Thus, the general solutions for [tex]\(\theta\)[/tex] are:
[tex]\[ \theta = (-\frac{\pi}{3}) + 4n\pi \quad \text{and} \quad \theta = (\frac{4\pi}{3}) + 4n\pi \][/tex]
So the correct multiple-choice answer is:
[tex]\[ \theta = \frac{7\pi}{3}, \frac{11\pi}{3} \][/tex]
1. Understand the basic trigonometric equation:
We start with [tex]\(\sin x = -\frac{1}{2}\)[/tex]. We know that sine is negative in the third and fourth quadrants. The reference angle for [tex]\(\sin x = \frac{1}{2}\)[/tex] is [tex]\(\frac{\pi}{6}\)[/tex], thus the solutions for [tex]\(\sin x = -\frac{1}{2}\)[/tex] are:
[tex]\[ x = -\frac{\pi}{6} + 2k\pi \quad \text{and} \quad x = \frac{7\pi}{6} + 2k\pi \][/tex]
for any integer [tex]\(k\)[/tex].
2. Apply the solutions to [tex]\(\sin\left(\frac{\theta}{2}\right)\)[/tex]:
Let [tex]\(x = \frac{\theta}{2}\)[/tex]. Substitute [tex]\(x\)[/tex] with [tex]\(\frac{\theta}{2}\)[/tex] in the general solutions:
[tex]\[ \frac{\theta}{2} = -\frac{\pi}{6} + 2k\pi \quad \text{and} \quad \frac{\theta}{2} = \frac{7\pi}{6} + 2k\pi \][/tex]
3. Solve for [tex]\(\theta\)[/tex]:
Multiply both sides of each equation by 2 to solve for [tex]\(\theta\)[/tex]:
[tex]\[ \theta = -\frac{\pi}{3} + 4k\pi \quad \text{and} \quad \theta = \frac{7\pi}{3} + 4k\pi \][/tex]
4. Rewrite the solutions:
Using [tex]\(n\)[/tex] as any integer (where [tex]\(n = k\)[/tex]):
[tex]\[ \theta = (-\frac{\pi}{3}) + 4n\pi \quad \text{and} \quad \theta = (\frac{7\pi}{3}) + 4n\pi \][/tex]
5. Additional equivalent form:
Noting that [tex]\(\frac{7\pi}{3}\)[/tex] can be expressed as [tex]\(\frac{4\pi}{3} + \pi\)[/tex], we get another commonly used form:
[tex]\[ \theta = (\frac{4\pi}{3}) + 4n\pi \][/tex]
Thus, the general solutions for [tex]\(\theta\)[/tex] are:
[tex]\[ \theta = (-\frac{\pi}{3}) + 4n\pi \quad \text{and} \quad \theta = (\frac{4\pi}{3}) + 4n\pi \][/tex]
So the correct multiple-choice answer is:
[tex]\[ \theta = \frac{7\pi}{3}, \frac{11\pi}{3} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.