Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the limit of the given expression as [tex]\( x \)[/tex] approaches [tex]\(-2\)[/tex], we need to carefully examine the function:
[tex]\[ \lim_{{x \to -2}} \frac{x^2 - 5x + 4}{x^2 - 2x - 8} \][/tex]
Step-by-step, we proceed as follows:
1. Factorize both the numerator and the denominator:
- For the numerator [tex]\(x^2 - 5x + 4\)[/tex], we need to find the factors of 4 that add up to -5. These factors are -1 and -4, so we can write:
[tex]\[ x^2 - 5x + 4 = (x - 1)(x - 4) \][/tex]
- For the denominator [tex]\(x^2 - 2x - 8\)[/tex], we need to find the factors of -8 that add up to -2. These factors are -4 and 2, so we can write:
[tex]\[ x^2 - 2x - 8 = (x - 4)(x + 2) \][/tex]
2. Rewrite the function with the factored expressions:
[tex]\[ \frac{x^2 - 5x + 4}{x^2 - 2x - 8} = \frac{(x - 1)(x - 4)}{(x - 4)(x + 2)} \][/tex]
3. Simplify the expression by canceling out the common factor [tex]\((x - 4)\)[/tex]:
[tex]\[ \frac{(x - 1)(x - 4)}{(x - 4)(x + 2)} = \frac{x - 1}{x + 2} \quad \text{for} \quad x \neq 4 \][/tex]
4. Evaluate the limit of the simplified expression as [tex]\( x \)[/tex] approaches [tex]\(-2\)[/tex]:
[tex]\[ \lim_{{x \to -2}} \frac{x - 1}{x + 2} \][/tex]
Substituting [tex]\( x = -2 \)[/tex] into the simplified expression:
[tex]\[ \frac{(-2) - 1}{(-2) + 2} = \frac{-3}{0} \][/tex]
Since [tex]\(\frac{-3}{0}\)[/tex] indicates division by zero, we need to consider the behavior around [tex]\(x = -2\)[/tex].
5. Examine the nature of the discontinuity:
- If we approach [tex]\(-2\)[/tex] from the left, the denominator is slightly negative and as we approach [tex]\(-2\)[/tex] from the right, the denominator is slightly positive. This leads to the function approaching [tex]\(-\infty\)[/tex] or [tex]\(\infty\)[/tex].
Hence:
[tex]\[ \lim_{{x \to -2}} \frac{x - 1}{x + 2} \quad \text{does not exist} \][/tex]
The limit does not exist because the function approaches [tex]\(-\infty\)[/tex] or [tex]\(\infty\)[/tex] as x approaches [tex]\(-2\)[/tex] from the left and right respectively.
[tex]\[ \lim_{{x \to -2}} \frac{x^2 - 5x + 4}{x^2 - 2x - 8} \][/tex]
Step-by-step, we proceed as follows:
1. Factorize both the numerator and the denominator:
- For the numerator [tex]\(x^2 - 5x + 4\)[/tex], we need to find the factors of 4 that add up to -5. These factors are -1 and -4, so we can write:
[tex]\[ x^2 - 5x + 4 = (x - 1)(x - 4) \][/tex]
- For the denominator [tex]\(x^2 - 2x - 8\)[/tex], we need to find the factors of -8 that add up to -2. These factors are -4 and 2, so we can write:
[tex]\[ x^2 - 2x - 8 = (x - 4)(x + 2) \][/tex]
2. Rewrite the function with the factored expressions:
[tex]\[ \frac{x^2 - 5x + 4}{x^2 - 2x - 8} = \frac{(x - 1)(x - 4)}{(x - 4)(x + 2)} \][/tex]
3. Simplify the expression by canceling out the common factor [tex]\((x - 4)\)[/tex]:
[tex]\[ \frac{(x - 1)(x - 4)}{(x - 4)(x + 2)} = \frac{x - 1}{x + 2} \quad \text{for} \quad x \neq 4 \][/tex]
4. Evaluate the limit of the simplified expression as [tex]\( x \)[/tex] approaches [tex]\(-2\)[/tex]:
[tex]\[ \lim_{{x \to -2}} \frac{x - 1}{x + 2} \][/tex]
Substituting [tex]\( x = -2 \)[/tex] into the simplified expression:
[tex]\[ \frac{(-2) - 1}{(-2) + 2} = \frac{-3}{0} \][/tex]
Since [tex]\(\frac{-3}{0}\)[/tex] indicates division by zero, we need to consider the behavior around [tex]\(x = -2\)[/tex].
5. Examine the nature of the discontinuity:
- If we approach [tex]\(-2\)[/tex] from the left, the denominator is slightly negative and as we approach [tex]\(-2\)[/tex] from the right, the denominator is slightly positive. This leads to the function approaching [tex]\(-\infty\)[/tex] or [tex]\(\infty\)[/tex].
Hence:
[tex]\[ \lim_{{x \to -2}} \frac{x - 1}{x + 2} \quad \text{does not exist} \][/tex]
The limit does not exist because the function approaches [tex]\(-\infty\)[/tex] or [tex]\(\infty\)[/tex] as x approaches [tex]\(-2\)[/tex] from the left and right respectively.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.