Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the limit of the given expression as [tex]\( x \)[/tex] approaches [tex]\(-2\)[/tex], we need to carefully examine the function:
[tex]\[ \lim_{{x \to -2}} \frac{x^2 - 5x + 4}{x^2 - 2x - 8} \][/tex]
Step-by-step, we proceed as follows:
1. Factorize both the numerator and the denominator:
- For the numerator [tex]\(x^2 - 5x + 4\)[/tex], we need to find the factors of 4 that add up to -5. These factors are -1 and -4, so we can write:
[tex]\[ x^2 - 5x + 4 = (x - 1)(x - 4) \][/tex]
- For the denominator [tex]\(x^2 - 2x - 8\)[/tex], we need to find the factors of -8 that add up to -2. These factors are -4 and 2, so we can write:
[tex]\[ x^2 - 2x - 8 = (x - 4)(x + 2) \][/tex]
2. Rewrite the function with the factored expressions:
[tex]\[ \frac{x^2 - 5x + 4}{x^2 - 2x - 8} = \frac{(x - 1)(x - 4)}{(x - 4)(x + 2)} \][/tex]
3. Simplify the expression by canceling out the common factor [tex]\((x - 4)\)[/tex]:
[tex]\[ \frac{(x - 1)(x - 4)}{(x - 4)(x + 2)} = \frac{x - 1}{x + 2} \quad \text{for} \quad x \neq 4 \][/tex]
4. Evaluate the limit of the simplified expression as [tex]\( x \)[/tex] approaches [tex]\(-2\)[/tex]:
[tex]\[ \lim_{{x \to -2}} \frac{x - 1}{x + 2} \][/tex]
Substituting [tex]\( x = -2 \)[/tex] into the simplified expression:
[tex]\[ \frac{(-2) - 1}{(-2) + 2} = \frac{-3}{0} \][/tex]
Since [tex]\(\frac{-3}{0}\)[/tex] indicates division by zero, we need to consider the behavior around [tex]\(x = -2\)[/tex].
5. Examine the nature of the discontinuity:
- If we approach [tex]\(-2\)[/tex] from the left, the denominator is slightly negative and as we approach [tex]\(-2\)[/tex] from the right, the denominator is slightly positive. This leads to the function approaching [tex]\(-\infty\)[/tex] or [tex]\(\infty\)[/tex].
Hence:
[tex]\[ \lim_{{x \to -2}} \frac{x - 1}{x + 2} \quad \text{does not exist} \][/tex]
The limit does not exist because the function approaches [tex]\(-\infty\)[/tex] or [tex]\(\infty\)[/tex] as x approaches [tex]\(-2\)[/tex] from the left and right respectively.
[tex]\[ \lim_{{x \to -2}} \frac{x^2 - 5x + 4}{x^2 - 2x - 8} \][/tex]
Step-by-step, we proceed as follows:
1. Factorize both the numerator and the denominator:
- For the numerator [tex]\(x^2 - 5x + 4\)[/tex], we need to find the factors of 4 that add up to -5. These factors are -1 and -4, so we can write:
[tex]\[ x^2 - 5x + 4 = (x - 1)(x - 4) \][/tex]
- For the denominator [tex]\(x^2 - 2x - 8\)[/tex], we need to find the factors of -8 that add up to -2. These factors are -4 and 2, so we can write:
[tex]\[ x^2 - 2x - 8 = (x - 4)(x + 2) \][/tex]
2. Rewrite the function with the factored expressions:
[tex]\[ \frac{x^2 - 5x + 4}{x^2 - 2x - 8} = \frac{(x - 1)(x - 4)}{(x - 4)(x + 2)} \][/tex]
3. Simplify the expression by canceling out the common factor [tex]\((x - 4)\)[/tex]:
[tex]\[ \frac{(x - 1)(x - 4)}{(x - 4)(x + 2)} = \frac{x - 1}{x + 2} \quad \text{for} \quad x \neq 4 \][/tex]
4. Evaluate the limit of the simplified expression as [tex]\( x \)[/tex] approaches [tex]\(-2\)[/tex]:
[tex]\[ \lim_{{x \to -2}} \frac{x - 1}{x + 2} \][/tex]
Substituting [tex]\( x = -2 \)[/tex] into the simplified expression:
[tex]\[ \frac{(-2) - 1}{(-2) + 2} = \frac{-3}{0} \][/tex]
Since [tex]\(\frac{-3}{0}\)[/tex] indicates division by zero, we need to consider the behavior around [tex]\(x = -2\)[/tex].
5. Examine the nature of the discontinuity:
- If we approach [tex]\(-2\)[/tex] from the left, the denominator is slightly negative and as we approach [tex]\(-2\)[/tex] from the right, the denominator is slightly positive. This leads to the function approaching [tex]\(-\infty\)[/tex] or [tex]\(\infty\)[/tex].
Hence:
[tex]\[ \lim_{{x \to -2}} \frac{x - 1}{x + 2} \quad \text{does not exist} \][/tex]
The limit does not exist because the function approaches [tex]\(-\infty\)[/tex] or [tex]\(\infty\)[/tex] as x approaches [tex]\(-2\)[/tex] from the left and right respectively.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.