Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
First, let's determine the point estimate of the population mean from the sample data provided.
To find the population mean estimate, we calculate the average of the sample data. Summing the sample data and dividing by the number of units in the sample:
The sum of the sample values:
[tex]\[ 39 + 31 + 38 + 40 + 29 + 32 + 33 + 39 + 35 + 32 + 32 + 27 + 30 + 31 + 27 + 30 + 29 + 34 + 36 + 25 + 30 + 32 + 38 + 35 + 40 + 29 + 32 + 31 + 26 + 26 + 32 + 26 + 30 + 40 + 32 + 39 + 37 + 25 + 29 + 34 \][/tex]
The number of units in the sample:
[tex]\[ 40 \][/tex]
Thus, the population mean estimate (average lifespan) is:
[tex]\[ \frac{\text{sum of the sample values}}{\text{number of units}} \][/tex]
From the calculations, the population mean estimate is [tex]\( 32.3 \)[/tex].
Next, we determine the point estimate of the proportion of defective units. A unit is considered defective if its lifespan is less than 28 days. We need to count the number of units in the sample that meet this criterion:
Defective units:
[tex]\[ 27, 27, 25, 25, 26, 26, 26, 25 \][/tex]
This gives us 7 defective units.
The proportion of defective units is thus:
[tex]\[ \frac{\text{number of defective units}}{\text{number of units}} \][/tex]
[tex]\[ \frac{7}{40} \][/tex]
From the calculations, the proportion of defective units is [tex]\( 0.175 \)[/tex].
So, the point estimate of the population mean is [tex]\( 32.3 \)[/tex], and the point estimate of the proportion of defective units is [tex]\( 0.175 \)[/tex].
To find the population mean estimate, we calculate the average of the sample data. Summing the sample data and dividing by the number of units in the sample:
The sum of the sample values:
[tex]\[ 39 + 31 + 38 + 40 + 29 + 32 + 33 + 39 + 35 + 32 + 32 + 27 + 30 + 31 + 27 + 30 + 29 + 34 + 36 + 25 + 30 + 32 + 38 + 35 + 40 + 29 + 32 + 31 + 26 + 26 + 32 + 26 + 30 + 40 + 32 + 39 + 37 + 25 + 29 + 34 \][/tex]
The number of units in the sample:
[tex]\[ 40 \][/tex]
Thus, the population mean estimate (average lifespan) is:
[tex]\[ \frac{\text{sum of the sample values}}{\text{number of units}} \][/tex]
From the calculations, the population mean estimate is [tex]\( 32.3 \)[/tex].
Next, we determine the point estimate of the proportion of defective units. A unit is considered defective if its lifespan is less than 28 days. We need to count the number of units in the sample that meet this criterion:
Defective units:
[tex]\[ 27, 27, 25, 25, 26, 26, 26, 25 \][/tex]
This gives us 7 defective units.
The proportion of defective units is thus:
[tex]\[ \frac{\text{number of defective units}}{\text{number of units}} \][/tex]
[tex]\[ \frac{7}{40} \][/tex]
From the calculations, the proportion of defective units is [tex]\( 0.175 \)[/tex].
So, the point estimate of the population mean is [tex]\( 32.3 \)[/tex], and the point estimate of the proportion of defective units is [tex]\( 0.175 \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.
Use the definition of logarithm to simplify each expression
log10 10
(b)
log10 10,000
(c)
log10 10−2