Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
First, let's determine the point estimate of the population mean from the sample data provided.
To find the population mean estimate, we calculate the average of the sample data. Summing the sample data and dividing by the number of units in the sample:
The sum of the sample values:
[tex]\[ 39 + 31 + 38 + 40 + 29 + 32 + 33 + 39 + 35 + 32 + 32 + 27 + 30 + 31 + 27 + 30 + 29 + 34 + 36 + 25 + 30 + 32 + 38 + 35 + 40 + 29 + 32 + 31 + 26 + 26 + 32 + 26 + 30 + 40 + 32 + 39 + 37 + 25 + 29 + 34 \][/tex]
The number of units in the sample:
[tex]\[ 40 \][/tex]
Thus, the population mean estimate (average lifespan) is:
[tex]\[ \frac{\text{sum of the sample values}}{\text{number of units}} \][/tex]
From the calculations, the population mean estimate is [tex]\( 32.3 \)[/tex].
Next, we determine the point estimate of the proportion of defective units. A unit is considered defective if its lifespan is less than 28 days. We need to count the number of units in the sample that meet this criterion:
Defective units:
[tex]\[ 27, 27, 25, 25, 26, 26, 26, 25 \][/tex]
This gives us 7 defective units.
The proportion of defective units is thus:
[tex]\[ \frac{\text{number of defective units}}{\text{number of units}} \][/tex]
[tex]\[ \frac{7}{40} \][/tex]
From the calculations, the proportion of defective units is [tex]\( 0.175 \)[/tex].
So, the point estimate of the population mean is [tex]\( 32.3 \)[/tex], and the point estimate of the proportion of defective units is [tex]\( 0.175 \)[/tex].
To find the population mean estimate, we calculate the average of the sample data. Summing the sample data and dividing by the number of units in the sample:
The sum of the sample values:
[tex]\[ 39 + 31 + 38 + 40 + 29 + 32 + 33 + 39 + 35 + 32 + 32 + 27 + 30 + 31 + 27 + 30 + 29 + 34 + 36 + 25 + 30 + 32 + 38 + 35 + 40 + 29 + 32 + 31 + 26 + 26 + 32 + 26 + 30 + 40 + 32 + 39 + 37 + 25 + 29 + 34 \][/tex]
The number of units in the sample:
[tex]\[ 40 \][/tex]
Thus, the population mean estimate (average lifespan) is:
[tex]\[ \frac{\text{sum of the sample values}}{\text{number of units}} \][/tex]
From the calculations, the population mean estimate is [tex]\( 32.3 \)[/tex].
Next, we determine the point estimate of the proportion of defective units. A unit is considered defective if its lifespan is less than 28 days. We need to count the number of units in the sample that meet this criterion:
Defective units:
[tex]\[ 27, 27, 25, 25, 26, 26, 26, 25 \][/tex]
This gives us 7 defective units.
The proportion of defective units is thus:
[tex]\[ \frac{\text{number of defective units}}{\text{number of units}} \][/tex]
[tex]\[ \frac{7}{40} \][/tex]
From the calculations, the proportion of defective units is [tex]\( 0.175 \)[/tex].
So, the point estimate of the population mean is [tex]\( 32.3 \)[/tex], and the point estimate of the proportion of defective units is [tex]\( 0.175 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.