Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Gravel is being dumped from a conveyor belt at a rate of 20 cubic feet per minute. It forms a pile in the shape of a right circular cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 20 feet high?

Recall that the volume of a right circular cone with height [tex]\(h\)[/tex] and radius of the base [tex]\(r\)[/tex] is given by:

[tex]\[
V = \frac{1}{3} \pi r^2 h
\][/tex]


Sagot :

To determine how fast the height of the gravel pile is increasing when the pile is 20 feet high, we'll use the given parameters. Let's break down the problem step-by-step:

### Step 1: Identify the Given Information
1. Gravel is being dumped at a rate of [tex]\( 20 \)[/tex] cubic feet per minute. This is the rate of change of the volume ([tex]\( \frac{dV}{dt} \)[/tex]).
2. The height of the pile is [tex]\( h = 20 \)[/tex] feet when we are evaluating.
3. The base diameter and height of the cone are always equal. Therefore, the diameter [tex]\( d = h \)[/tex], and the radius [tex]\( r = \frac{d}{2} = \frac{h}{2} \)[/tex].

### Step 2: Write the Volume Formula
The volume [tex]\( V \)[/tex] of a right circular cone is given by:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]

Since [tex]\( r = \frac{h}{2} \)[/tex]:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{h}{2}\right)^2 h = \frac{1}{3} \pi \left(\frac{h^2}{4}\right) h = \frac{1}{12} \pi h^3 \][/tex]

### Step 3: Differentiate the Volume with Respect to Time
To find how fast the height [tex]\( h \)[/tex] is increasing with respect to time, we need to differentiate [tex]\( V \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dV}{dt} = \frac{d}{dt} \left(\frac{1}{12} \pi h^3 \right) \][/tex]

Using the chain rule:
[tex]\[ \frac{dV}{dt} = \frac{1}{12} \pi \cdot 3h^2 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dV}{dt} = \frac{1}{4} \pi h^2 \frac{dh}{dt} \][/tex]

### Step 4: Solve for [tex]\( \frac{dh}{dt} \)[/tex]
Given [tex]\( \frac{dV}{dt} = 20 \)[/tex] cubic feet per minute, and [tex]\( h = 20 \)[/tex] feet, we can substitute these values into the equation:
[tex]\[ 20 = \frac{1}{4} \pi (20)^2 \frac{dh}{dt} \][/tex]

Simplify and solve for [tex]\( \frac{dh}{dt} \)[/tex]:
[tex]\[ 20 = \frac{1}{4} \pi \cdot 400 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ 20 = 100 \pi \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{20}{100 \pi} \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{1}{5 \pi} \][/tex]

Convert this to a decimal:
[tex]\[ \frac{dh}{dt} \approx 0.06366197723675814 \][/tex]

Therefore, the height of the pile is increasing at a rate of approximately [tex]\( 0.06366 \)[/tex] feet per minute when the pile is 20 feet high.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.