Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine how fast the height of the gravel pile is increasing when the pile is 20 feet high, we'll use the given parameters. Let's break down the problem step-by-step:
### Step 1: Identify the Given Information
1. Gravel is being dumped at a rate of [tex]\( 20 \)[/tex] cubic feet per minute. This is the rate of change of the volume ([tex]\( \frac{dV}{dt} \)[/tex]).
2. The height of the pile is [tex]\( h = 20 \)[/tex] feet when we are evaluating.
3. The base diameter and height of the cone are always equal. Therefore, the diameter [tex]\( d = h \)[/tex], and the radius [tex]\( r = \frac{d}{2} = \frac{h}{2} \)[/tex].
### Step 2: Write the Volume Formula
The volume [tex]\( V \)[/tex] of a right circular cone is given by:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
Since [tex]\( r = \frac{h}{2} \)[/tex]:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{h}{2}\right)^2 h = \frac{1}{3} \pi \left(\frac{h^2}{4}\right) h = \frac{1}{12} \pi h^3 \][/tex]
### Step 3: Differentiate the Volume with Respect to Time
To find how fast the height [tex]\( h \)[/tex] is increasing with respect to time, we need to differentiate [tex]\( V \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dV}{dt} = \frac{d}{dt} \left(\frac{1}{12} \pi h^3 \right) \][/tex]
Using the chain rule:
[tex]\[ \frac{dV}{dt} = \frac{1}{12} \pi \cdot 3h^2 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dV}{dt} = \frac{1}{4} \pi h^2 \frac{dh}{dt} \][/tex]
### Step 4: Solve for [tex]\( \frac{dh}{dt} \)[/tex]
Given [tex]\( \frac{dV}{dt} = 20 \)[/tex] cubic feet per minute, and [tex]\( h = 20 \)[/tex] feet, we can substitute these values into the equation:
[tex]\[ 20 = \frac{1}{4} \pi (20)^2 \frac{dh}{dt} \][/tex]
Simplify and solve for [tex]\( \frac{dh}{dt} \)[/tex]:
[tex]\[ 20 = \frac{1}{4} \pi \cdot 400 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ 20 = 100 \pi \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{20}{100 \pi} \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{1}{5 \pi} \][/tex]
Convert this to a decimal:
[tex]\[ \frac{dh}{dt} \approx 0.06366197723675814 \][/tex]
Therefore, the height of the pile is increasing at a rate of approximately [tex]\( 0.06366 \)[/tex] feet per minute when the pile is 20 feet high.
### Step 1: Identify the Given Information
1. Gravel is being dumped at a rate of [tex]\( 20 \)[/tex] cubic feet per minute. This is the rate of change of the volume ([tex]\( \frac{dV}{dt} \)[/tex]).
2. The height of the pile is [tex]\( h = 20 \)[/tex] feet when we are evaluating.
3. The base diameter and height of the cone are always equal. Therefore, the diameter [tex]\( d = h \)[/tex], and the radius [tex]\( r = \frac{d}{2} = \frac{h}{2} \)[/tex].
### Step 2: Write the Volume Formula
The volume [tex]\( V \)[/tex] of a right circular cone is given by:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
Since [tex]\( r = \frac{h}{2} \)[/tex]:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{h}{2}\right)^2 h = \frac{1}{3} \pi \left(\frac{h^2}{4}\right) h = \frac{1}{12} \pi h^3 \][/tex]
### Step 3: Differentiate the Volume with Respect to Time
To find how fast the height [tex]\( h \)[/tex] is increasing with respect to time, we need to differentiate [tex]\( V \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dV}{dt} = \frac{d}{dt} \left(\frac{1}{12} \pi h^3 \right) \][/tex]
Using the chain rule:
[tex]\[ \frac{dV}{dt} = \frac{1}{12} \pi \cdot 3h^2 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dV}{dt} = \frac{1}{4} \pi h^2 \frac{dh}{dt} \][/tex]
### Step 4: Solve for [tex]\( \frac{dh}{dt} \)[/tex]
Given [tex]\( \frac{dV}{dt} = 20 \)[/tex] cubic feet per minute, and [tex]\( h = 20 \)[/tex] feet, we can substitute these values into the equation:
[tex]\[ 20 = \frac{1}{4} \pi (20)^2 \frac{dh}{dt} \][/tex]
Simplify and solve for [tex]\( \frac{dh}{dt} \)[/tex]:
[tex]\[ 20 = \frac{1}{4} \pi \cdot 400 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ 20 = 100 \pi \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{20}{100 \pi} \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{1}{5 \pi} \][/tex]
Convert this to a decimal:
[tex]\[ \frac{dh}{dt} \approx 0.06366197723675814 \][/tex]
Therefore, the height of the pile is increasing at a rate of approximately [tex]\( 0.06366 \)[/tex] feet per minute when the pile is 20 feet high.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.