Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

How many Joules of energy would it take to heat up a piece of silver from [tex]\(60^\circ \text{F}\)[/tex] to [tex]\(255^\circ \text{F}\)[/tex]?

Sagot :

To solve this problem, let's break it down step-by-step:


1. Identify the specific heat capacity of silver:

The specific heat capacity of silver is [tex]\( 0.235 \, \text{J/(g·°C)} \)[/tex].

2. Convert the initial and final temperatures from Fahrenheit to Celsius:

The formula to convert Fahrenheit (°F) to Celsius (°C) is:
[tex]\[ °C = (°F - 32) \times \frac{5}{9} \][/tex]

- Initial temperature:
[tex]\[ 60°F = (60 - 32) \times \frac{5}{9} = 15.5556°C \][/tex]

- Final temperature:
[tex]\[ 255°F = (255 - 32) \times \frac{5}{9} = 123.8889°C \][/tex]

3. Calculate the temperature change in Celsius:

The temperature change ([tex]\( \Delta T \)[/tex]) is the difference between the final and initial temperatures:
[tex]\[ \Delta T = 123.8889°C - 15.5556°C = 108.3333°C \][/tex]

4. Assume an arbitrary mass for the calculation:

Let's assume a mass ([tex]\( m \)[/tex]) of 1 gram, which simplifies our calculation.

5. Apply the formula to calculate the energy needed:

The formula to calculate the energy [tex]\( Q \)[/tex] required to heat the silver is:
[tex]\[ Q = m \times c \times \Delta T \][/tex]

Where:
- [tex]\( m \)[/tex] is the mass in grams,
- [tex]\( c \)[/tex] is the specific heat capacity in J/(g·°C),
- [tex]\( \Delta T \)[/tex] is the temperature change in °C.

Substituting the values:
[tex]\[ Q = 1 \, \text{g} \times 0.235 \, \text{J/(g·°C)} \times 108.3333 \, \text{°C} \][/tex]

[tex]\[ Q = 25.4583 \, \text{J} \][/tex]

That's the amount of energy needed to heat a piece of silver from 60°F to 255°F. Therefore, the energy required is approximately 25.46 Joules.