Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the values of [tex]\( x \)[/tex] in the interval [tex]\( 0^{\circ} < x < 360^{\circ} \)[/tex] for which [tex]\( \cos x = -0.4226 \)[/tex], follow these steps:
1. Identify the cosine function properties:
- The cosine function is negative in the second and third quadrants.
- We need to find the reference angle first.
2. Determine the reference angle:
- The reference angle is the angle in the first quadrant for which the cosine value is the absolute value of the given cosine.
- For [tex]\(\cos x = -0.4226\)[/tex], find the angle [tex]\(\theta\)[/tex] satisfying [tex]\(\cos \theta = 0.4226\)[/tex].
3. Find the reference angle:
- The reference angle in degrees is approximately [tex]\( 65.001^\circ \)[/tex].
4. Calculate the angles in the second and third quadrants:
- In the second quadrant, the angle is [tex]\( 180^\circ - \text{reference angle} \)[/tex].
[tex]\[ \text{Angle in second quadrant} = 180^\circ - 65.001^\circ \approx 115^\circ \][/tex]
- In the third quadrant, the angle is [tex]\( 180^\circ + \text{reference angle} \)[/tex].
[tex]\[ \text{Angle in third quadrant} = 180^\circ + 65.001^\circ \approx 245^\circ \][/tex]
5. Round the angles to the nearest degree:
- The angles are [tex]\( 115^\circ \)[/tex] and [tex]\( 245^\circ \)[/tex].
### Final Answer:
The values of [tex]\( x \)[/tex] for which [tex]\( \cos x = -0.4226 \)[/tex] in the interval [tex]\( 0^\circ < x < 360^\circ \)[/tex] are:
[tex]\[ \boxed{115^\circ \text{ and } 245^\circ} \][/tex]
1. Identify the cosine function properties:
- The cosine function is negative in the second and third quadrants.
- We need to find the reference angle first.
2. Determine the reference angle:
- The reference angle is the angle in the first quadrant for which the cosine value is the absolute value of the given cosine.
- For [tex]\(\cos x = -0.4226\)[/tex], find the angle [tex]\(\theta\)[/tex] satisfying [tex]\(\cos \theta = 0.4226\)[/tex].
3. Find the reference angle:
- The reference angle in degrees is approximately [tex]\( 65.001^\circ \)[/tex].
4. Calculate the angles in the second and third quadrants:
- In the second quadrant, the angle is [tex]\( 180^\circ - \text{reference angle} \)[/tex].
[tex]\[ \text{Angle in second quadrant} = 180^\circ - 65.001^\circ \approx 115^\circ \][/tex]
- In the third quadrant, the angle is [tex]\( 180^\circ + \text{reference angle} \)[/tex].
[tex]\[ \text{Angle in third quadrant} = 180^\circ + 65.001^\circ \approx 245^\circ \][/tex]
5. Round the angles to the nearest degree:
- The angles are [tex]\( 115^\circ \)[/tex] and [tex]\( 245^\circ \)[/tex].
### Final Answer:
The values of [tex]\( x \)[/tex] for which [tex]\( \cos x = -0.4226 \)[/tex] in the interval [tex]\( 0^\circ < x < 360^\circ \)[/tex] are:
[tex]\[ \boxed{115^\circ \text{ and } 245^\circ} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.