Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the missing fraction that when added to [tex]\(\frac{5}{8}\)[/tex] gives a sum of 1, we can follow these steps:
1. Set Up the Equation:
We start with the equation given in the problem:
[tex]\[ \frac{5}{8} + \frac{x}{y} = 1 \][/tex]
2. Isolate the Missing Fraction:
We need to find the value of [tex]\(\frac{x}{y}\)[/tex]. To do this, we can subtract [tex]\(\frac{5}{8}\)[/tex] from both sides of the equation:
[tex]\[ \frac{x}{y} = 1 - \frac{5}{8} \][/tex]
3. Simplify the Right-Hand Side:
To simplify [tex]\(1 - \frac{5}{8}\)[/tex], we need to express the 1 as a fraction with the same denominator as [tex]\(\frac{5}{8}\)[/tex]. Since the denominator of [tex]\(\frac{5}{8}\)[/tex] is 8, we rewrite 1 as [tex]\(\frac{8}{8}\)[/tex]:
[tex]\[ 1 = \frac{8}{8} \][/tex]
Now we can make the subtraction:
[tex]\[ \frac{x}{y} = \frac{8}{8} - \frac{5}{8} \][/tex]
4. Perform the Subtraction:
With the common denominator, we subtract the numerators:
[tex]\[ \frac{x}{y} = \frac{8 - 5}{8} = \frac{3}{8} \][/tex]
5. Identify the Missing Fraction:
The fraction on the right-hand side is in its simplest form, so we can identify the numerator and the denominator:
[tex]\[ \frac{x}{y} = \frac{3}{8} \][/tex]
Therefore, the missing fraction that when added to [tex]\(\frac{5}{8}\)[/tex] results in 1 is:
[tex]\[ \frac{3}{8} \][/tex]
Hence, the solution to the problem is that the missing fraction in its simplest form is [tex]\(\frac{3}{8}\)[/tex].
1. Set Up the Equation:
We start with the equation given in the problem:
[tex]\[ \frac{5}{8} + \frac{x}{y} = 1 \][/tex]
2. Isolate the Missing Fraction:
We need to find the value of [tex]\(\frac{x}{y}\)[/tex]. To do this, we can subtract [tex]\(\frac{5}{8}\)[/tex] from both sides of the equation:
[tex]\[ \frac{x}{y} = 1 - \frac{5}{8} \][/tex]
3. Simplify the Right-Hand Side:
To simplify [tex]\(1 - \frac{5}{8}\)[/tex], we need to express the 1 as a fraction with the same denominator as [tex]\(\frac{5}{8}\)[/tex]. Since the denominator of [tex]\(\frac{5}{8}\)[/tex] is 8, we rewrite 1 as [tex]\(\frac{8}{8}\)[/tex]:
[tex]\[ 1 = \frac{8}{8} \][/tex]
Now we can make the subtraction:
[tex]\[ \frac{x}{y} = \frac{8}{8} - \frac{5}{8} \][/tex]
4. Perform the Subtraction:
With the common denominator, we subtract the numerators:
[tex]\[ \frac{x}{y} = \frac{8 - 5}{8} = \frac{3}{8} \][/tex]
5. Identify the Missing Fraction:
The fraction on the right-hand side is in its simplest form, so we can identify the numerator and the denominator:
[tex]\[ \frac{x}{y} = \frac{3}{8} \][/tex]
Therefore, the missing fraction that when added to [tex]\(\frac{5}{8}\)[/tex] results in 1 is:
[tex]\[ \frac{3}{8} \][/tex]
Hence, the solution to the problem is that the missing fraction in its simplest form is [tex]\(\frac{3}{8}\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.