Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

The top of a ladder is 10 meters from the ground when the ladder leans against the wall at an angle of [tex]$35.5^{\circ}$[/tex] with respect to the ground. If the ladder is moved by [tex]$x$[/tex] meters toward the wall, it makes an angle of [tex]$54.5^{\circ}$[/tex] with the ground, and its top is 14 meters above the ground. What is [tex][tex]$x$[/tex][/tex] rounded to the nearest meter?

A. 7 meters
B. 4 meters
C. 3 meters
D. 1 meter


Sagot :

Certainly! Let's work through this problem step-by-step to find the distance [tex]\( x \)[/tex] the ladder is moved towards the wall, rounded to the nearest meter.

1. Understanding the Problem:
- Initially, the top of the ladder is 10 meters from the ground when it leans against a wall, making an angle of [tex]\( 35.5^\circ \)[/tex] with respect to the ground.
- After the ladder is moved closer to the wall by a distance [tex]\( x \)[/tex], it creates an angle of [tex]\( 54.5^\circ \)[/tex] with the ground, and its top is then 14 meters above the ground.
- We need to find the value of [tex]\( x \)[/tex].

2. Step-by-Step Solution:

- First, we need to find the horizontal distances from the wall (the base of the ladder) in both initial and final positions.

- Let’s denote:
- [tex]\( h_1 = 10 \)[/tex] meters (initial height)
- [tex]\( \theta_1 = 35.5^\circ \)[/tex] (initial angle)
- [tex]\( h_2 = 14 \)[/tex] meters (final height)
- [tex]\( \theta_2 = 54.5^\circ \)[/tex] (final angle)

3. Calculate the Initial Horizontal Distance:

We use the trigonometric relation:
[tex]\[ \tan(\theta) = \frac{\text{height}}{\text{base}} \][/tex]
For the initial position:
[tex]\[ \tan(35.5^\circ) = \frac{10}{d_1} \][/tex]
Where [tex]\( d_1 \)[/tex] is the initial horizontal distance.
[tex]\[ d_1 = \frac{10}{\tan(35.5^\circ)} \][/tex]

4. Calculate the Final Horizontal Distance:

For the final position:
[tex]\[ \tan(54.5^\circ) = \frac{14}{d_2} \][/tex]
Where [tex]\( d_2 \)[/tex] is the final horizontal distance.
[tex]\[ d_2 = \frac{14}{\tan(54.5^\circ)} \][/tex]

5. Calculate the Distance Moved:

The distance the ladder is moved towards the wall is [tex]\( x \)[/tex], which is the difference between the initial and final horizontal distances:
[tex]\[ x = d_1 - d_2 \][/tex]

6. Rounding to the Nearest Meter:

After calculating the above steps (finding [tex]\( d_1 \)[/tex] and [tex]\( d_2 \)[/tex]), the difference [tex]\( x \)[/tex] is found, and it should be rounded to the nearest meter.

Based on the calculations:
[tex]\[ x \approx 4 \][/tex]

Therefore, the distance the ladder is moved towards the wall, rounded to the nearest meter, is:
[tex]\[ \text{Answer: } x = 4 \text{ meters} \][/tex]

Thus, the correct option is:
[tex]\[ \boxed{4 \text{ meters}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.