Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the equation [tex]\(\log(x) = 2\)[/tex] for [tex]\(x\)[/tex], follow these steps:
1. Understand the Equation: Recognize that the equation [tex]\(\log(x) = 2\)[/tex] is in logarithmic form. In this expression, the logarithm is assumed to be base 10 (common logarithm), so it is actually [tex]\(\log_{10}(x) = 2\)[/tex].
2. Convert to Exponential Form: To solve for [tex]\(x\)[/tex], you need to convert the logarithmic equation to its equivalent exponential form. The general relationship between logarithms and exponents is:
[tex]\[ \log_{b}(a) = c \quad \text{is equivalent to} \quad a = b^c \][/tex]
Here, [tex]\(b\)[/tex] is the base of the logarithm, [tex]\(a\)[/tex] is the argument of the logarithm, and [tex]\(c\)[/tex] is the result.
Applying this to our equation, [tex]\(\log_{10}(x) = 2\)[/tex], we get:
[tex]\[ x = 10^2 \][/tex]
3. Calculate the Exponential: Now, compute [tex]\(10^2\)[/tex].
[tex]\[ 10^2 = 10 \times 10 = 100 \][/tex]
Hence, the value of [tex]\(x\)[/tex] is:
[tex]\[ x = 100 \][/tex]
So, the exact answer is:
[tex]\[ x = 100 \][/tex]
1. Understand the Equation: Recognize that the equation [tex]\(\log(x) = 2\)[/tex] is in logarithmic form. In this expression, the logarithm is assumed to be base 10 (common logarithm), so it is actually [tex]\(\log_{10}(x) = 2\)[/tex].
2. Convert to Exponential Form: To solve for [tex]\(x\)[/tex], you need to convert the logarithmic equation to its equivalent exponential form. The general relationship between logarithms and exponents is:
[tex]\[ \log_{b}(a) = c \quad \text{is equivalent to} \quad a = b^c \][/tex]
Here, [tex]\(b\)[/tex] is the base of the logarithm, [tex]\(a\)[/tex] is the argument of the logarithm, and [tex]\(c\)[/tex] is the result.
Applying this to our equation, [tex]\(\log_{10}(x) = 2\)[/tex], we get:
[tex]\[ x = 10^2 \][/tex]
3. Calculate the Exponential: Now, compute [tex]\(10^2\)[/tex].
[tex]\[ 10^2 = 10 \times 10 = 100 \][/tex]
Hence, the value of [tex]\(x\)[/tex] is:
[tex]\[ x = 100 \][/tex]
So, the exact answer is:
[tex]\[ x = 100 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.