At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the equation [tex]\(\log(x) = 2\)[/tex] for [tex]\(x\)[/tex], follow these steps:
1. Understand the Equation: Recognize that the equation [tex]\(\log(x) = 2\)[/tex] is in logarithmic form. In this expression, the logarithm is assumed to be base 10 (common logarithm), so it is actually [tex]\(\log_{10}(x) = 2\)[/tex].
2. Convert to Exponential Form: To solve for [tex]\(x\)[/tex], you need to convert the logarithmic equation to its equivalent exponential form. The general relationship between logarithms and exponents is:
[tex]\[ \log_{b}(a) = c \quad \text{is equivalent to} \quad a = b^c \][/tex]
Here, [tex]\(b\)[/tex] is the base of the logarithm, [tex]\(a\)[/tex] is the argument of the logarithm, and [tex]\(c\)[/tex] is the result.
Applying this to our equation, [tex]\(\log_{10}(x) = 2\)[/tex], we get:
[tex]\[ x = 10^2 \][/tex]
3. Calculate the Exponential: Now, compute [tex]\(10^2\)[/tex].
[tex]\[ 10^2 = 10 \times 10 = 100 \][/tex]
Hence, the value of [tex]\(x\)[/tex] is:
[tex]\[ x = 100 \][/tex]
So, the exact answer is:
[tex]\[ x = 100 \][/tex]
1. Understand the Equation: Recognize that the equation [tex]\(\log(x) = 2\)[/tex] is in logarithmic form. In this expression, the logarithm is assumed to be base 10 (common logarithm), so it is actually [tex]\(\log_{10}(x) = 2\)[/tex].
2. Convert to Exponential Form: To solve for [tex]\(x\)[/tex], you need to convert the logarithmic equation to its equivalent exponential form. The general relationship between logarithms and exponents is:
[tex]\[ \log_{b}(a) = c \quad \text{is equivalent to} \quad a = b^c \][/tex]
Here, [tex]\(b\)[/tex] is the base of the logarithm, [tex]\(a\)[/tex] is the argument of the logarithm, and [tex]\(c\)[/tex] is the result.
Applying this to our equation, [tex]\(\log_{10}(x) = 2\)[/tex], we get:
[tex]\[ x = 10^2 \][/tex]
3. Calculate the Exponential: Now, compute [tex]\(10^2\)[/tex].
[tex]\[ 10^2 = 10 \times 10 = 100 \][/tex]
Hence, the value of [tex]\(x\)[/tex] is:
[tex]\[ x = 100 \][/tex]
So, the exact answer is:
[tex]\[ x = 100 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.