Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Select the correct answer.

A circle is described by the equation [tex]$x^2+y^2-6x+8y=0$[/tex]. What are the coordinates of the center of the circle and the length of its radius?

A. [tex]$(-3,4), 25$[/tex] units
B. [tex][tex]$(-3,4), 5$[/tex][/tex] units
C. [tex]$(3,-4), 25$[/tex] units
D. [tex]$(3,-4), 5$[/tex] units

Sagot :

To solve for the center and the radius of the circle given by the equation [tex]\( x^2 + y^2 - 6x + 8y = 0 \)[/tex], let's rewrite it in standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex].

1. Completing the Square:

- For the [tex]\( x \)[/tex]-terms [tex]\( x^2 - 6x \)[/tex]:
[tex]\[ x^2 - 6x \quad \text{can be rewritten by completing the square as}\quad (x - 3)^2 - 9 \][/tex]

- For the [tex]\( y \)[/tex]-terms [tex]\( y^2 + 8y \)[/tex]:
[tex]\[ y^2 + 8y \quad \text{can be rewritten by completing the square as}\quad (y + 4)^2 - 16 \][/tex]

2. Rewrite the equation:
[tex]\[ x^2 - 6x + y^2 + 8y = 0 \][/tex]
Substituting the completed squares:
[tex]\[ (x - 3)^2 - 9 + (y + 4)^2 - 16 = 0 \][/tex]

3. Simplify:
[tex]\[ (x - 3)^2 + (y + 4)^2 - 25 = 0 \][/tex]
Adding 25 to both sides:
[tex]\[ (x - 3)^2 + (y + 4)^2 = 25 \][/tex]

Now we have the circle in standard form:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
By comparing, we can identify:
- [tex]\( h = 3 \)[/tex]
- [tex]\( k = -4 \)[/tex]
- [tex]\( r^2 = 25 \)[/tex] so [tex]\( r = \sqrt{25} = 5 \)[/tex]

Thus, the center of the circle is [tex]\((3, -4)\)[/tex] and the radius is [tex]\(5\)[/tex] units.

The correct answer is:
D. [tex]\((3, -4), 5\)[/tex] units