Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the molal freezing-point constant ([tex]\(K_f\)[/tex]) of the unknown solvent, we can use the formula related to freezing point depression, which is given by:
[tex]\[ \Delta T_f = K_f \cdot m \][/tex]
where:
- [tex]\(\Delta T_f\)[/tex] is the freezing-point depression. For this problem, [tex]\(\Delta T_f\)[/tex] is 7.8°C.
- [tex]\(K_f\)[/tex] is the molal freezing-point constant of the solvent.
- [tex]\(m\)[/tex] is the molality of the solution.
First, let's determine the molality ([tex]\(m\)[/tex]) of the solution.
Molality ([tex]\(m\)[/tex]) is defined as the number of moles of solute per kilogram of solvent:
[tex]\[ m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} \][/tex]
In the given problem:
- The number of moles of solute is 2 moles.
- The mass of the solvent is 1 kg.
Therefore,
[tex]\[ m = \frac{2 \, \text{moles}}{1 \, \text{kg}} = 2 \, \text{mol/kg} \][/tex]
Next, we need to solve for the molal freezing-point constant ([tex]\(K_f\)[/tex]). Rearranging the freezing-point depression formula to solve for [tex]\(K_f\)[/tex], we get:
[tex]\[ K_f = \frac{\Delta T_f}{m} \][/tex]
Substituting the known values:
[tex]\[ K_f = \frac{7.8^\circ \text{C}}{2 \, \text{mol/kg}} = 3.9^\circ \text{C/mol/kg} \][/tex]
Therefore, the molal freezing-point constant of the unknown solvent is [tex]\(3.9^\circ \text{C/mol/kg}\)[/tex].
The correct answer is:
c. [tex]\(-3.9^\circ \text{C/mol/kg}\)[/tex]
[tex]\[ \Delta T_f = K_f \cdot m \][/tex]
where:
- [tex]\(\Delta T_f\)[/tex] is the freezing-point depression. For this problem, [tex]\(\Delta T_f\)[/tex] is 7.8°C.
- [tex]\(K_f\)[/tex] is the molal freezing-point constant of the solvent.
- [tex]\(m\)[/tex] is the molality of the solution.
First, let's determine the molality ([tex]\(m\)[/tex]) of the solution.
Molality ([tex]\(m\)[/tex]) is defined as the number of moles of solute per kilogram of solvent:
[tex]\[ m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} \][/tex]
In the given problem:
- The number of moles of solute is 2 moles.
- The mass of the solvent is 1 kg.
Therefore,
[tex]\[ m = \frac{2 \, \text{moles}}{1 \, \text{kg}} = 2 \, \text{mol/kg} \][/tex]
Next, we need to solve for the molal freezing-point constant ([tex]\(K_f\)[/tex]). Rearranging the freezing-point depression formula to solve for [tex]\(K_f\)[/tex], we get:
[tex]\[ K_f = \frac{\Delta T_f}{m} \][/tex]
Substituting the known values:
[tex]\[ K_f = \frac{7.8^\circ \text{C}}{2 \, \text{mol/kg}} = 3.9^\circ \text{C/mol/kg} \][/tex]
Therefore, the molal freezing-point constant of the unknown solvent is [tex]\(3.9^\circ \text{C/mol/kg}\)[/tex].
The correct answer is:
c. [tex]\(-3.9^\circ \text{C/mol/kg}\)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.