Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which of the given numbers is a zero of the function [tex]\( g(x) = (x^2 - 36)(x + 7) \)[/tex], we need to find the values of [tex]\( x \)[/tex] for which [tex]\( g(x) = 0 \)[/tex].
Step-by-Step Solution:
1. Identify the polynomial factors:
The function [tex]\( g(x) \)[/tex] is given as [tex]\( g(x) = (x^2 - 36)(x + 7) \)[/tex].
2. Factor the polynomial expression:
We can factor [tex]\( x^2 - 36 \)[/tex] as a difference of squares:
[tex]\[ x^2 - 36 = (x - 6)(x + 6) \][/tex]
Hence, we can rewrite [tex]\( g(x) \)[/tex] as:
[tex]\[ g(x) = (x - 6)(x + 6)(x + 7) \][/tex]
3. Set the function equal to zero:
To find the zeros, we need to solve:
[tex]\[ (x - 6)(x + 6)(x + 7) = 0 \][/tex]
4. Find the roots:
The equation will be zero when any of the factors are zero:
[tex]\[ x - 6 = 0 \implies x = 6 \][/tex]
[tex]\[ x + 6 = 0 \implies x = -6 \][/tex]
[tex]\[ x + 7 = 0 \implies x = -7 \][/tex]
5. List the zeros of the function:
The zeros of the function are [tex]\( x = 6 \)[/tex], [tex]\( x = -6 \)[/tex], and [tex]\( x = -7 \)[/tex].
6. Check the given options:
The options are:
- 0
- -6
- 18
- 7
Among the options, the number [tex]\( -6 \)[/tex] is one of the zeros of the function.
Thus, the correct answer is:
[tex]\[ \boxed{-6} \][/tex]
Step-by-Step Solution:
1. Identify the polynomial factors:
The function [tex]\( g(x) \)[/tex] is given as [tex]\( g(x) = (x^2 - 36)(x + 7) \)[/tex].
2. Factor the polynomial expression:
We can factor [tex]\( x^2 - 36 \)[/tex] as a difference of squares:
[tex]\[ x^2 - 36 = (x - 6)(x + 6) \][/tex]
Hence, we can rewrite [tex]\( g(x) \)[/tex] as:
[tex]\[ g(x) = (x - 6)(x + 6)(x + 7) \][/tex]
3. Set the function equal to zero:
To find the zeros, we need to solve:
[tex]\[ (x - 6)(x + 6)(x + 7) = 0 \][/tex]
4. Find the roots:
The equation will be zero when any of the factors are zero:
[tex]\[ x - 6 = 0 \implies x = 6 \][/tex]
[tex]\[ x + 6 = 0 \implies x = -6 \][/tex]
[tex]\[ x + 7 = 0 \implies x = -7 \][/tex]
5. List the zeros of the function:
The zeros of the function are [tex]\( x = 6 \)[/tex], [tex]\( x = -6 \)[/tex], and [tex]\( x = -7 \)[/tex].
6. Check the given options:
The options are:
- 0
- -6
- 18
- 7
Among the options, the number [tex]\( -6 \)[/tex] is one of the zeros of the function.
Thus, the correct answer is:
[tex]\[ \boxed{-6} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.