Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the mass of octane (C_8H_{18}) needed to produce 24 moles of CO_2 through combustion, let's break down the problem into clear, systematic steps:
1. Write down the balanced chemical equation:
[tex]\[ 2 \, \text{C}_8\text{H}_{18} (l) + 25 \, \text{O}_2 (g) \rightarrow 16 \, \text{CO}_2 (g) + 18 \, \text{H}_2\text{O} (l) \][/tex]
2. Identify the molar ratio between C_8H_{18} and CO_2:
From the equation, we see that 2 moles of C_8H_{18} produce 16 moles of CO_2. Simplifying this ratio:
[tex]\[ \frac{2 \, \text{moles} \, \text{C}_8\text{H}_{18}}{16 \, \text{moles} \, \text{CO}_2} = \frac{1 \, \text{mole} \, \text{C}_8\text{H}_{18}}{8 \, \text{moles} \, \text{CO}_2} \][/tex]
Therefore, 1 mole of C_8H_{18} produces 8 moles of CO_2.
3. Determine the moles of C_8H_{18} required to produce 24 moles of CO_2:
[tex]\[ \frac{24 \, \text{moles} \, \text{CO}_2}{8 \, \text{moles} \, \text{CO}_2 / \text{mole} \, \text{C}_8\text{H}_{18}} = 3 \, \text{moles} \, \text{C}_8\text{H}_{18} \][/tex]
4. Calculate the molar mass of C_8H_{18}:
To find the molar mass, sum the masses of all atoms in the molecule:
- Carbon (C): [tex]\(8 \, \text{atoms} \times 12.01 \, \text{g/mol} = 96.08 \, \text{g/mol}\)[/tex]
- Hydrogen (H): [tex]\(18 \, \text{atoms} \times 1.008 \, \text{g/mol} = 18.144 \, \text{g/mol}\)[/tex]
- Therefore, molar mass of C_8H_{18} = [tex]\(96.08 \, \text{g/mol} + 18.144 \, \text{g/mol} = 114.224 \, \text{g/mol}\)[/tex]
5. Calculate the mass of C_8H_{18} required:
[tex]\[ 3 \, \text{moles} \, \text{C}_8\text{H}_{18} \times 114.224 \, \text{g/mol} = 342.672 \, \text{g} \][/tex]
So, the mass of octane that must be burned to produce 24 moles of CO_2 is approximately 342.672 grams.
1. Write down the balanced chemical equation:
[tex]\[ 2 \, \text{C}_8\text{H}_{18} (l) + 25 \, \text{O}_2 (g) \rightarrow 16 \, \text{CO}_2 (g) + 18 \, \text{H}_2\text{O} (l) \][/tex]
2. Identify the molar ratio between C_8H_{18} and CO_2:
From the equation, we see that 2 moles of C_8H_{18} produce 16 moles of CO_2. Simplifying this ratio:
[tex]\[ \frac{2 \, \text{moles} \, \text{C}_8\text{H}_{18}}{16 \, \text{moles} \, \text{CO}_2} = \frac{1 \, \text{mole} \, \text{C}_8\text{H}_{18}}{8 \, \text{moles} \, \text{CO}_2} \][/tex]
Therefore, 1 mole of C_8H_{18} produces 8 moles of CO_2.
3. Determine the moles of C_8H_{18} required to produce 24 moles of CO_2:
[tex]\[ \frac{24 \, \text{moles} \, \text{CO}_2}{8 \, \text{moles} \, \text{CO}_2 / \text{mole} \, \text{C}_8\text{H}_{18}} = 3 \, \text{moles} \, \text{C}_8\text{H}_{18} \][/tex]
4. Calculate the molar mass of C_8H_{18}:
To find the molar mass, sum the masses of all atoms in the molecule:
- Carbon (C): [tex]\(8 \, \text{atoms} \times 12.01 \, \text{g/mol} = 96.08 \, \text{g/mol}\)[/tex]
- Hydrogen (H): [tex]\(18 \, \text{atoms} \times 1.008 \, \text{g/mol} = 18.144 \, \text{g/mol}\)[/tex]
- Therefore, molar mass of C_8H_{18} = [tex]\(96.08 \, \text{g/mol} + 18.144 \, \text{g/mol} = 114.224 \, \text{g/mol}\)[/tex]
5. Calculate the mass of C_8H_{18} required:
[tex]\[ 3 \, \text{moles} \, \text{C}_8\text{H}_{18} \times 114.224 \, \text{g/mol} = 342.672 \, \text{g} \][/tex]
So, the mass of octane that must be burned to produce 24 moles of CO_2 is approximately 342.672 grams.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.