At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's solve the problem step-by-step.
### Step-by-Step Solution
1. Understand the De Broglie Wavelength Formula:
The de Broglie wavelength ([tex]\(\lambda\)[/tex]) can be calculated using the formula:
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
where:
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex])
- [tex]\(m\)[/tex] is the mass of the object (in kg)
- [tex]\(v\)[/tex] is the velocity of the object (in m/s)
2. Given Data:
- Mass ([tex]\(m\)[/tex]) = 0.030 kg
- Velocity ([tex]\(v\)[/tex]) = 540 m/s
- Planck's Constant ([tex]\(h\)[/tex]) = [tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex]
3. Substitute the Values into the Formula:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{0.030 \times 540} \][/tex]
4. Perform the Calculation:
First, calculate the denominator:
[tex]\[ 0.030 \times 540 = 16.2 \][/tex]
Then divide Planck's constant by this product:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{16.2} \approx 4.092592592592593 \times 10^{-35} \, \text{m} \][/tex]
5. Round to Significant Figures:
The answer [tex]\(4.092592592592593 \times 10^{-35} \, \text{m}\)[/tex] can be rounded to match the significant figures typically provided in such contexts. Hence, it is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
### Conclusion
Hence, the de Broglie wavelength of the bullet of mass 0.030 kg traveling at [tex]\(540 \, \text{m/s}\)[/tex] is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
The correct answer from the given options is:
[tex]\[ \boxed{4.1 \times 10^{-35} \, \text{m}} \][/tex]
### Step-by-Step Solution
1. Understand the De Broglie Wavelength Formula:
The de Broglie wavelength ([tex]\(\lambda\)[/tex]) can be calculated using the formula:
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
where:
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex])
- [tex]\(m\)[/tex] is the mass of the object (in kg)
- [tex]\(v\)[/tex] is the velocity of the object (in m/s)
2. Given Data:
- Mass ([tex]\(m\)[/tex]) = 0.030 kg
- Velocity ([tex]\(v\)[/tex]) = 540 m/s
- Planck's Constant ([tex]\(h\)[/tex]) = [tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex]
3. Substitute the Values into the Formula:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{0.030 \times 540} \][/tex]
4. Perform the Calculation:
First, calculate the denominator:
[tex]\[ 0.030 \times 540 = 16.2 \][/tex]
Then divide Planck's constant by this product:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{16.2} \approx 4.092592592592593 \times 10^{-35} \, \text{m} \][/tex]
5. Round to Significant Figures:
The answer [tex]\(4.092592592592593 \times 10^{-35} \, \text{m}\)[/tex] can be rounded to match the significant figures typically provided in such contexts. Hence, it is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
### Conclusion
Hence, the de Broglie wavelength of the bullet of mass 0.030 kg traveling at [tex]\(540 \, \text{m/s}\)[/tex] is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
The correct answer from the given options is:
[tex]\[ \boxed{4.1 \times 10^{-35} \, \text{m}} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.