Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's solve the problem step-by-step.
### Step-by-Step Solution
1. Understand the De Broglie Wavelength Formula:
The de Broglie wavelength ([tex]\(\lambda\)[/tex]) can be calculated using the formula:
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
where:
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex])
- [tex]\(m\)[/tex] is the mass of the object (in kg)
- [tex]\(v\)[/tex] is the velocity of the object (in m/s)
2. Given Data:
- Mass ([tex]\(m\)[/tex]) = 0.030 kg
- Velocity ([tex]\(v\)[/tex]) = 540 m/s
- Planck's Constant ([tex]\(h\)[/tex]) = [tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex]
3. Substitute the Values into the Formula:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{0.030 \times 540} \][/tex]
4. Perform the Calculation:
First, calculate the denominator:
[tex]\[ 0.030 \times 540 = 16.2 \][/tex]
Then divide Planck's constant by this product:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{16.2} \approx 4.092592592592593 \times 10^{-35} \, \text{m} \][/tex]
5. Round to Significant Figures:
The answer [tex]\(4.092592592592593 \times 10^{-35} \, \text{m}\)[/tex] can be rounded to match the significant figures typically provided in such contexts. Hence, it is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
### Conclusion
Hence, the de Broglie wavelength of the bullet of mass 0.030 kg traveling at [tex]\(540 \, \text{m/s}\)[/tex] is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
The correct answer from the given options is:
[tex]\[ \boxed{4.1 \times 10^{-35} \, \text{m}} \][/tex]
### Step-by-Step Solution
1. Understand the De Broglie Wavelength Formula:
The de Broglie wavelength ([tex]\(\lambda\)[/tex]) can be calculated using the formula:
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
where:
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex])
- [tex]\(m\)[/tex] is the mass of the object (in kg)
- [tex]\(v\)[/tex] is the velocity of the object (in m/s)
2. Given Data:
- Mass ([tex]\(m\)[/tex]) = 0.030 kg
- Velocity ([tex]\(v\)[/tex]) = 540 m/s
- Planck's Constant ([tex]\(h\)[/tex]) = [tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex]
3. Substitute the Values into the Formula:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{0.030 \times 540} \][/tex]
4. Perform the Calculation:
First, calculate the denominator:
[tex]\[ 0.030 \times 540 = 16.2 \][/tex]
Then divide Planck's constant by this product:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{16.2} \approx 4.092592592592593 \times 10^{-35} \, \text{m} \][/tex]
5. Round to Significant Figures:
The answer [tex]\(4.092592592592593 \times 10^{-35} \, \text{m}\)[/tex] can be rounded to match the significant figures typically provided in such contexts. Hence, it is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
### Conclusion
Hence, the de Broglie wavelength of the bullet of mass 0.030 kg traveling at [tex]\(540 \, \text{m/s}\)[/tex] is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
The correct answer from the given options is:
[tex]\[ \boxed{4.1 \times 10^{-35} \, \text{m}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.