Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
### Step-by-Step Solution
1. Understand the De Broglie Wavelength Formula:
The de Broglie wavelength ([tex]\(\lambda\)[/tex]) can be calculated using the formula:
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
where:
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex])
- [tex]\(m\)[/tex] is the mass of the object (in kg)
- [tex]\(v\)[/tex] is the velocity of the object (in m/s)
2. Given Data:
- Mass ([tex]\(m\)[/tex]) = 0.030 kg
- Velocity ([tex]\(v\)[/tex]) = 540 m/s
- Planck's Constant ([tex]\(h\)[/tex]) = [tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex]
3. Substitute the Values into the Formula:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{0.030 \times 540} \][/tex]
4. Perform the Calculation:
First, calculate the denominator:
[tex]\[ 0.030 \times 540 = 16.2 \][/tex]
Then divide Planck's constant by this product:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{16.2} \approx 4.092592592592593 \times 10^{-35} \, \text{m} \][/tex]
5. Round to Significant Figures:
The answer [tex]\(4.092592592592593 \times 10^{-35} \, \text{m}\)[/tex] can be rounded to match the significant figures typically provided in such contexts. Hence, it is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
### Conclusion
Hence, the de Broglie wavelength of the bullet of mass 0.030 kg traveling at [tex]\(540 \, \text{m/s}\)[/tex] is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
The correct answer from the given options is:
[tex]\[ \boxed{4.1 \times 10^{-35} \, \text{m}} \][/tex]
### Step-by-Step Solution
1. Understand the De Broglie Wavelength Formula:
The de Broglie wavelength ([tex]\(\lambda\)[/tex]) can be calculated using the formula:
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
where:
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex])
- [tex]\(m\)[/tex] is the mass of the object (in kg)
- [tex]\(v\)[/tex] is the velocity of the object (in m/s)
2. Given Data:
- Mass ([tex]\(m\)[/tex]) = 0.030 kg
- Velocity ([tex]\(v\)[/tex]) = 540 m/s
- Planck's Constant ([tex]\(h\)[/tex]) = [tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex]
3. Substitute the Values into the Formula:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{0.030 \times 540} \][/tex]
4. Perform the Calculation:
First, calculate the denominator:
[tex]\[ 0.030 \times 540 = 16.2 \][/tex]
Then divide Planck's constant by this product:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{16.2} \approx 4.092592592592593 \times 10^{-35} \, \text{m} \][/tex]
5. Round to Significant Figures:
The answer [tex]\(4.092592592592593 \times 10^{-35} \, \text{m}\)[/tex] can be rounded to match the significant figures typically provided in such contexts. Hence, it is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
### Conclusion
Hence, the de Broglie wavelength of the bullet of mass 0.030 kg traveling at [tex]\(540 \, \text{m/s}\)[/tex] is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
The correct answer from the given options is:
[tex]\[ \boxed{4.1 \times 10^{-35} \, \text{m}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.