Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the zeros of the function [tex]\( g(x) = (x^2 - 1)(x^2 - 2x + 1) \)[/tex], let's proceed step by step by examining each factor separately.
1. First factor: [tex]\( x^2 - 1 \)[/tex]:
[tex]\[ x^2 - 1 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x^2 = 1 \][/tex]
Taking the square root of both sides:
[tex]\[ x = \pm 1 \][/tex]
So, the zeros of the first factor are [tex]\( x = -1 \)[/tex] and [tex]\( x = 1 \)[/tex].
2. Second factor: [tex]\( x^2 - 2x + 1 \)[/tex]:
[tex]\[ x^2 - 2x + 1 = 0 \][/tex]
Notice that this can be factored as a perfect square:
[tex]\[ (x - 1)^2 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x - 1 = 0 \implies x = 1 \][/tex]
So, the zero of the second factor is [tex]\( x = 1 \)[/tex].
3. Combining the zeros:
From the first factor, we have the zeros [tex]\( x = -1 \)[/tex] and [tex]\( x = 1 \)[/tex]. From the second factor, we have the zero [tex]\( x = 1 \)[/tex].
Combining these zeros, the complete set of zeros is:
[tex]\[ \{-1, 1, 1\} \][/tex]
4. Identifying distinct zeros:
The distinct zeros among [tex]\(-1, 1, 1\)[/tex] are simply [tex]\(-1\)[/tex] and [tex]\(1\)[/tex].
5. Counting the distinct zeros:
There are 2 distinct real zeros: [tex]\(-1\)[/tex] and [tex]\(1\)[/tex].
Hence, the correct statement is:
- The function has two distinct real zeros.
1. First factor: [tex]\( x^2 - 1 \)[/tex]:
[tex]\[ x^2 - 1 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x^2 = 1 \][/tex]
Taking the square root of both sides:
[tex]\[ x = \pm 1 \][/tex]
So, the zeros of the first factor are [tex]\( x = -1 \)[/tex] and [tex]\( x = 1 \)[/tex].
2. Second factor: [tex]\( x^2 - 2x + 1 \)[/tex]:
[tex]\[ x^2 - 2x + 1 = 0 \][/tex]
Notice that this can be factored as a perfect square:
[tex]\[ (x - 1)^2 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x - 1 = 0 \implies x = 1 \][/tex]
So, the zero of the second factor is [tex]\( x = 1 \)[/tex].
3. Combining the zeros:
From the first factor, we have the zeros [tex]\( x = -1 \)[/tex] and [tex]\( x = 1 \)[/tex]. From the second factor, we have the zero [tex]\( x = 1 \)[/tex].
Combining these zeros, the complete set of zeros is:
[tex]\[ \{-1, 1, 1\} \][/tex]
4. Identifying distinct zeros:
The distinct zeros among [tex]\(-1, 1, 1\)[/tex] are simply [tex]\(-1\)[/tex] and [tex]\(1\)[/tex].
5. Counting the distinct zeros:
There are 2 distinct real zeros: [tex]\(-1\)[/tex] and [tex]\(1\)[/tex].
Hence, the correct statement is:
- The function has two distinct real zeros.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.