Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's find the force between two charges [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] using Coulomb's Law. The given values are:
- Coulomb's constant, [tex]\( k_e = 8.99 \times 10^9 \, \text{Nm}^2 / \text{C}^2 \)[/tex]
- Charges, [tex]\( q_1 = 1 \, \text{C} \)[/tex] and [tex]\( q_3 = 1 \, \text{C} \)[/tex]
- Distance between the charges, [tex]\( r = 0.55 \, \text{m} \)[/tex]
Coulomb's Law formula for the force between two point charges is given by:
[tex]\[ \vec{F}_3 = k_e \frac{|q_1 q_3|}{r^2} \][/tex]
Now, let's substitute the given values into the formula:
1. Check the magnitudes of the charges:
[tex]\[ |q_1 q_3| = |1 \cdot 1| = 1 \, \text{C}^2 \][/tex]
2. Substitute [tex]\( k_e = 8.99 \times 10^9 \, \text{Nm}^2 / \text{C}^2 \)[/tex], [tex]\( |q_1 q_3| = 1 \, \text{C}^2 \)[/tex], and [tex]\( r = 0.55 \, \text{m} \)[/tex] into the formula:
[tex]\[ \vec{F}_3 = 8.99 \times 10^9 \cdot \frac{1}{(0.55)^2} \][/tex]
3. Calculate the square of the distance:
[tex]\[ (0.55)^2 = 0.3025 \, \text{m}^2 \][/tex]
4. Now, divide the numerator by the square of the distance:
[tex]\[ \frac{1}{0.3025} \approx 3.304 \][/tex]
5. Finally, multiply this result by [tex]\( 8.99 \times 10^9 \)[/tex]:
[tex]\[ \vec{F}_3 \approx 8.99 \times 10^9 \cdot 3.304 \][/tex]
6. Perform the multiplication:
[tex]\[ \vec{F}_3 \approx 29.719 \times 10^9 \, \text{N} \][/tex]
[tex]\[ \vec{F}_3 \approx 2.9719 \times 10^{10} \, \text{N} \][/tex]
Therefore, the force [tex]\( \vec{F}_3 \)[/tex] between the charges [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] is approximately [tex]\( 2.9719 \times 10^{10} \, \text{N} \)[/tex].
- Coulomb's constant, [tex]\( k_e = 8.99 \times 10^9 \, \text{Nm}^2 / \text{C}^2 \)[/tex]
- Charges, [tex]\( q_1 = 1 \, \text{C} \)[/tex] and [tex]\( q_3 = 1 \, \text{C} \)[/tex]
- Distance between the charges, [tex]\( r = 0.55 \, \text{m} \)[/tex]
Coulomb's Law formula for the force between two point charges is given by:
[tex]\[ \vec{F}_3 = k_e \frac{|q_1 q_3|}{r^2} \][/tex]
Now, let's substitute the given values into the formula:
1. Check the magnitudes of the charges:
[tex]\[ |q_1 q_3| = |1 \cdot 1| = 1 \, \text{C}^2 \][/tex]
2. Substitute [tex]\( k_e = 8.99 \times 10^9 \, \text{Nm}^2 / \text{C}^2 \)[/tex], [tex]\( |q_1 q_3| = 1 \, \text{C}^2 \)[/tex], and [tex]\( r = 0.55 \, \text{m} \)[/tex] into the formula:
[tex]\[ \vec{F}_3 = 8.99 \times 10^9 \cdot \frac{1}{(0.55)^2} \][/tex]
3. Calculate the square of the distance:
[tex]\[ (0.55)^2 = 0.3025 \, \text{m}^2 \][/tex]
4. Now, divide the numerator by the square of the distance:
[tex]\[ \frac{1}{0.3025} \approx 3.304 \][/tex]
5. Finally, multiply this result by [tex]\( 8.99 \times 10^9 \)[/tex]:
[tex]\[ \vec{F}_3 \approx 8.99 \times 10^9 \cdot 3.304 \][/tex]
6. Perform the multiplication:
[tex]\[ \vec{F}_3 \approx 29.719 \times 10^9 \, \text{N} \][/tex]
[tex]\[ \vec{F}_3 \approx 2.9719 \times 10^{10} \, \text{N} \][/tex]
Therefore, the force [tex]\( \vec{F}_3 \)[/tex] between the charges [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] is approximately [tex]\( 2.9719 \times 10^{10} \, \text{N} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.