Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which pairs in the given reaction are acid-conjugate base pairs, we need to identify which substances can be considered an acid and its corresponding conjugate base.
Given reaction:
[tex]$NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$[/tex]
In this reaction, let's analyze each species:
1. [tex]\(NH_4^+\)[/tex] (Ammonium ion): This substance donates a proton ([tex]\(H^+\)[/tex]) to water, indicating that it is acting as an acid.
2. [tex]\(NH_3\)[/tex] (Ammonia): This substance is formed after [tex]\(NH_4^+\)[/tex] donates a proton, meaning it is the conjugate base of [tex]\(NH_4^+\)[/tex].
3. [tex]\(H_2O\)[/tex] (Water): This substance accepts a proton ([tex]\(H^+\)[/tex]) from [tex]\(NH_4^+\)[/tex], meaning it is acting as a base.
4. [tex]\(H_3O^+\)[/tex] (Hydronium ion): This substance is formed when water accepts a proton, meaning it is the conjugate acid of [tex]\(H_2O\)[/tex].
Acid-conjugate base pairs are pairs of compounds that differ by one proton. Once we analyze the reaction, we can pair the substances as follows:
- [tex]\(NH_4^+\)[/tex] (acid) and [tex]\(NH_3\)[/tex] (conjugate base)
- [tex]\(H_2O\)[/tex] (base) and [tex]\(H_3O^+\)[/tex] (conjugate acid)
Now, let's look at the provided options:
1. [tex]\(NH_4^+\)[/tex] and [tex]\(NH_3\)[/tex]
2. [tex]\(NH_4^+\)[/tex] and [tex]\(H_3O^+\)[/tex]
3. [tex]\(H_2O\)[/tex] and [tex]\(NH_3\)[/tex]
4. [tex]\(H_2O\)[/tex] and [tex]\(H_3O^+\)[/tex]
From our analysis:
- [tex]\(NH_4^+\)[/tex] and [tex]\(NH_3\)[/tex] is a correct pair (acid-conjugate base).
- [tex]\(H_2O\)[/tex] and [tex]\(H_3O^+\)[/tex] is another correct pair (base-conjugate acid).
Considering the question asks for an acid-conjugate base pair:
[tex]$\text{The correct answer is: } NH_4^+ \text{ and } NH_3$[/tex]
Therefore, the correct answer is: [tex]$NH_4{ }^{+}$[/tex] and [tex]$NH_3$[/tex].
Given reaction:
[tex]$NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$[/tex]
In this reaction, let's analyze each species:
1. [tex]\(NH_4^+\)[/tex] (Ammonium ion): This substance donates a proton ([tex]\(H^+\)[/tex]) to water, indicating that it is acting as an acid.
2. [tex]\(NH_3\)[/tex] (Ammonia): This substance is formed after [tex]\(NH_4^+\)[/tex] donates a proton, meaning it is the conjugate base of [tex]\(NH_4^+\)[/tex].
3. [tex]\(H_2O\)[/tex] (Water): This substance accepts a proton ([tex]\(H^+\)[/tex]) from [tex]\(NH_4^+\)[/tex], meaning it is acting as a base.
4. [tex]\(H_3O^+\)[/tex] (Hydronium ion): This substance is formed when water accepts a proton, meaning it is the conjugate acid of [tex]\(H_2O\)[/tex].
Acid-conjugate base pairs are pairs of compounds that differ by one proton. Once we analyze the reaction, we can pair the substances as follows:
- [tex]\(NH_4^+\)[/tex] (acid) and [tex]\(NH_3\)[/tex] (conjugate base)
- [tex]\(H_2O\)[/tex] (base) and [tex]\(H_3O^+\)[/tex] (conjugate acid)
Now, let's look at the provided options:
1. [tex]\(NH_4^+\)[/tex] and [tex]\(NH_3\)[/tex]
2. [tex]\(NH_4^+\)[/tex] and [tex]\(H_3O^+\)[/tex]
3. [tex]\(H_2O\)[/tex] and [tex]\(NH_3\)[/tex]
4. [tex]\(H_2O\)[/tex] and [tex]\(H_3O^+\)[/tex]
From our analysis:
- [tex]\(NH_4^+\)[/tex] and [tex]\(NH_3\)[/tex] is a correct pair (acid-conjugate base).
- [tex]\(H_2O\)[/tex] and [tex]\(H_3O^+\)[/tex] is another correct pair (base-conjugate acid).
Considering the question asks for an acid-conjugate base pair:
[tex]$\text{The correct answer is: } NH_4^+ \text{ and } NH_3$[/tex]
Therefore, the correct answer is: [tex]$NH_4{ }^{+}$[/tex] and [tex]$NH_3$[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.