Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which relationship has a zero slope, we need to analyze the given tables of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values.
A relationship has a zero slope if the [tex]\( y \)[/tex]-values are constant, meaning they do not change regardless of the [tex]\( x \)[/tex]-values.
Let's examine the first table:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & 2 \\ \hline -1 & 2 \\ \hline 1 & 2 \\ \hline 3 & 2 \\ \hline \end{array} \][/tex]
In this table, the [tex]\( y \)[/tex]-values are all 2. Since the [tex]\( y \)[/tex]-values do not change (they are constant), this relationship has a zero slope.
Now, let's examine the second table:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & 3 \\ \hline -1 & 1 \\ \hline 1 & -1 \\ \hline 3 & -3 \\ \hline \end{array} \][/tex]
In this table, the [tex]\( y \)[/tex]-values are 3, 1, -1, and -3. Since the [tex]\( y \)[/tex]-values are changing and are not constant, this relationship does not have a zero slope.
Therefore, based on our examination:
- The first relationship ([tex]\( x \)[/tex] and [tex]\( y \)[/tex] pairs from the first table) has a zero slope.
- The second relationship ([tex]\( x \)[/tex] and [tex]\( y \)[/tex] pairs from the second table) does not have a zero slope.
Thus, the relationship with the zero slope is the first one.
A relationship has a zero slope if the [tex]\( y \)[/tex]-values are constant, meaning they do not change regardless of the [tex]\( x \)[/tex]-values.
Let's examine the first table:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & 2 \\ \hline -1 & 2 \\ \hline 1 & 2 \\ \hline 3 & 2 \\ \hline \end{array} \][/tex]
In this table, the [tex]\( y \)[/tex]-values are all 2. Since the [tex]\( y \)[/tex]-values do not change (they are constant), this relationship has a zero slope.
Now, let's examine the second table:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & 3 \\ \hline -1 & 1 \\ \hline 1 & -1 \\ \hline 3 & -3 \\ \hline \end{array} \][/tex]
In this table, the [tex]\( y \)[/tex]-values are 3, 1, -1, and -3. Since the [tex]\( y \)[/tex]-values are changing and are not constant, this relationship does not have a zero slope.
Therefore, based on our examination:
- The first relationship ([tex]\( x \)[/tex] and [tex]\( y \)[/tex] pairs from the first table) has a zero slope.
- The second relationship ([tex]\( x \)[/tex] and [tex]\( y \)[/tex] pairs from the second table) does not have a zero slope.
Thus, the relationship with the zero slope is the first one.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.