Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

The value of [tex]$x$[/tex] is [tex]$\frac{\sqrt{2}}{2}$[/tex].

Part B

Now that you know the value of [tex][tex]$x$[/tex][/tex], find the value of [tex]$\sin 45^{\circ}$[/tex], or [tex]$\sin \frac{\pi}{4}$[/tex].


Sagot :

To find the value of [tex]\(\sin 45^\circ\)[/tex] or [tex]\(\sin \frac{\pi}{4}\)[/tex], we can use the known trigonometric angle values.

First, let's recall that 45 degrees or [tex]\(\frac{\pi}{4}\)[/tex] radians is a special angle in trigonometry. For this angle, both the sine and cosine have the same value. The fundamental trigonometric ratios for 45 degrees are derived from an isosceles right triangle (45-45-90 triangle), where the two legs are equal in length.

For an isosceles right triangle with legs of length [tex]\(1\)[/tex]:
- The hypotenuse can be calculated using the Pythagorean theorem:
[tex]\[ \text{hypotenuse} = \sqrt{1^2 + 1^2} = \sqrt{2} \][/tex]

- The sine of 45 degrees ([tex]\(\sin 45^\circ\)[/tex]) is defined as the ratio of the length of the opposite side to the length of the hypotenuse:
[tex]\[ \sin 45^\circ = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]

Therefore, we get:
[tex]\[ \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} \approx 0.7071067811865475 \][/tex]

So, [tex]\(\sin 45^\circ\)[/tex] or [tex]\(\sin \frac{\pi}{4}\)[/tex] has a value of approximately [tex]\(0.7071067811865475\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.