Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the length [tex]\( x \)[/tex] of the rectangular vegetable garden, we start with the given equation that relates the length and width of the garden to its area:
[tex]\[ x(x - 3) = 54 \][/tex]
1. First, let's expand and rewrite the equation:
[tex]\[ x^2 - 3x = 54 \][/tex]
2. Next, we'll move all terms to one side to set the equation to zero:
[tex]\[ x^2 - 3x - 54 = 0 \][/tex]
3. Now we solve this quadratic equation. We need to find the roots of the equation [tex]\( x^2 - 3x - 54 = 0 \)[/tex]. To do this, we can factorize the quadratic equation:
We look for two numbers that multiply to [tex]\(-54\)[/tex] (the constant term) and add to [tex]\(-3\)[/tex] (the coefficient of [tex]\( x \)[/tex]). Those numbers are [tex]\( -9 \)[/tex] and [tex]\( 6 \)[/tex].
4. Using these numbers, we can write:
[tex]\[ x^2 - 9x + 6x - 54 = 0 \][/tex]
5. Factor by grouping:
[tex]\[ x(x - 9) + 6(x - 9) = 0 \][/tex]
6. Factor out the common term [tex]\((x - 9)\)[/tex]:
[tex]\[ (x - 9)(x + 6) = 0 \][/tex]
7. Set each factor equal to zero to solve for [tex]\( x \)[/tex]:
[tex]\[ x - 9 = 0 \quad \text{or} \quad x + 6 = 0 \][/tex]
[tex]\[ x = 9 \quad \text{or} \quad x = -6 \][/tex]
Since the length of the garden must be a positive value, we discard [tex]\( x = -6 \)[/tex] as it is not physically meaningful in this context.
Thus, the length [tex]\( x \)[/tex] of the garden is [tex]\( 9 \)[/tex] feet.
The length is [tex]\(\boxed{9}\)[/tex] feet.
[tex]\[ x(x - 3) = 54 \][/tex]
1. First, let's expand and rewrite the equation:
[tex]\[ x^2 - 3x = 54 \][/tex]
2. Next, we'll move all terms to one side to set the equation to zero:
[tex]\[ x^2 - 3x - 54 = 0 \][/tex]
3. Now we solve this quadratic equation. We need to find the roots of the equation [tex]\( x^2 - 3x - 54 = 0 \)[/tex]. To do this, we can factorize the quadratic equation:
We look for two numbers that multiply to [tex]\(-54\)[/tex] (the constant term) and add to [tex]\(-3\)[/tex] (the coefficient of [tex]\( x \)[/tex]). Those numbers are [tex]\( -9 \)[/tex] and [tex]\( 6 \)[/tex].
4. Using these numbers, we can write:
[tex]\[ x^2 - 9x + 6x - 54 = 0 \][/tex]
5. Factor by grouping:
[tex]\[ x(x - 9) + 6(x - 9) = 0 \][/tex]
6. Factor out the common term [tex]\((x - 9)\)[/tex]:
[tex]\[ (x - 9)(x + 6) = 0 \][/tex]
7. Set each factor equal to zero to solve for [tex]\( x \)[/tex]:
[tex]\[ x - 9 = 0 \quad \text{or} \quad x + 6 = 0 \][/tex]
[tex]\[ x = 9 \quad \text{or} \quad x = -6 \][/tex]
Since the length of the garden must be a positive value, we discard [tex]\( x = -6 \)[/tex] as it is not physically meaningful in this context.
Thus, the length [tex]\( x \)[/tex] of the garden is [tex]\( 9 \)[/tex] feet.
The length is [tex]\(\boxed{9}\)[/tex] feet.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.