Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the inequalities step-by-step and match each one with the correct solution.
1. Inequality: [tex]\(4x - 3 > 5\)[/tex] and [tex]\(6x + 2 < -10\)[/tex]
- Solve [tex]\(4x - 3 > 5\)[/tex]:
[tex]\[ 4x - 3 > 5 \\ 4x > 8 \\ x > 2 \][/tex]
- Solve [tex]\(6x + 2 < -10\)[/tex]:
[tex]\[ 6x + 2 < -10 \\ 6x < -12 \\ x < -2 \][/tex]
Since [tex]\(x\)[/tex] cannot be both greater than 2 and less than -2 at the same time, there is no solution.
2. Inequality: [tex]\(|2x + 4| < 2\)[/tex]
- Rewrite the absolute value inequality as two separate inequalities:
[tex]\[ -2 < 2x + 4 < 2 \][/tex]
- Solve the compound inequality:
[tex]\[ -2 < 2x + 4 \\ -2 - 4 < 2x \\ -6 < 2x \\ -3 < x \][/tex]
and
[tex]\[ 2x + 4 < 2 \\ 2x < 2 - 4 \\ 2x < -2 \\ x < -1 \][/tex]
Putting these together, the solution for [tex]\(|2x + 4| < 2\)[/tex] is:
[tex]\[ -3 < x < -1 \][/tex]
3. Inequality: [tex]\(|x - 2| + 5 < 4\)[/tex]
- Isolate the absolute value term:
[tex]\[ |x - 2| + 5 < 4 \\ |x - 2| < -1 \][/tex]
Since the absolute value expression cannot be less than a negative number, there is no solution.
4. Inequality: [tex]\(|3x| - 3 < 3\)[/tex]
- Isolate the absolute value term:
[tex]\[ |3x| - 3 < 3 \\ |3x| < 6 \][/tex]
- Rewrite the absolute value inequality as two separate inequalities:
[tex]\[ -6 < 3x < 6 \][/tex]
- Solve the compound inequality:
[tex]\[ -6 < 3x \\ \frac{-6}{3} < x \\ -2 < x \][/tex]
and
[tex]\[ 3x < 6 \\ x < \frac{6}{3} \\ x < 2 \][/tex]
Putting these together, the solution for [tex]\(|3x| - 3 < 3\)[/tex] is:
[tex]\[ -2 < x < 2 \][/tex]
Now we can clearly match the inequalities to their solutions:
- [tex]\(4x - 3 > 5\)[/tex] and [tex]\(6x + 2 < -10\)[/tex]: no solution
- [tex]\(|2x + 4| < 2\)[/tex]: [tex]\(-3 < x < -1\)[/tex]
- [tex]\(|x - 2| + 5 < 4\)[/tex]: no solution
- [tex]\(|3x| - 3 < 3\)[/tex]: [tex]\(-2 < x < 2\)[/tex]
1. Inequality: [tex]\(4x - 3 > 5\)[/tex] and [tex]\(6x + 2 < -10\)[/tex]
- Solve [tex]\(4x - 3 > 5\)[/tex]:
[tex]\[ 4x - 3 > 5 \\ 4x > 8 \\ x > 2 \][/tex]
- Solve [tex]\(6x + 2 < -10\)[/tex]:
[tex]\[ 6x + 2 < -10 \\ 6x < -12 \\ x < -2 \][/tex]
Since [tex]\(x\)[/tex] cannot be both greater than 2 and less than -2 at the same time, there is no solution.
2. Inequality: [tex]\(|2x + 4| < 2\)[/tex]
- Rewrite the absolute value inequality as two separate inequalities:
[tex]\[ -2 < 2x + 4 < 2 \][/tex]
- Solve the compound inequality:
[tex]\[ -2 < 2x + 4 \\ -2 - 4 < 2x \\ -6 < 2x \\ -3 < x \][/tex]
and
[tex]\[ 2x + 4 < 2 \\ 2x < 2 - 4 \\ 2x < -2 \\ x < -1 \][/tex]
Putting these together, the solution for [tex]\(|2x + 4| < 2\)[/tex] is:
[tex]\[ -3 < x < -1 \][/tex]
3. Inequality: [tex]\(|x - 2| + 5 < 4\)[/tex]
- Isolate the absolute value term:
[tex]\[ |x - 2| + 5 < 4 \\ |x - 2| < -1 \][/tex]
Since the absolute value expression cannot be less than a negative number, there is no solution.
4. Inequality: [tex]\(|3x| - 3 < 3\)[/tex]
- Isolate the absolute value term:
[tex]\[ |3x| - 3 < 3 \\ |3x| < 6 \][/tex]
- Rewrite the absolute value inequality as two separate inequalities:
[tex]\[ -6 < 3x < 6 \][/tex]
- Solve the compound inequality:
[tex]\[ -6 < 3x \\ \frac{-6}{3} < x \\ -2 < x \][/tex]
and
[tex]\[ 3x < 6 \\ x < \frac{6}{3} \\ x < 2 \][/tex]
Putting these together, the solution for [tex]\(|3x| - 3 < 3\)[/tex] is:
[tex]\[ -2 < x < 2 \][/tex]
Now we can clearly match the inequalities to their solutions:
- [tex]\(4x - 3 > 5\)[/tex] and [tex]\(6x + 2 < -10\)[/tex]: no solution
- [tex]\(|2x + 4| < 2\)[/tex]: [tex]\(-3 < x < -1\)[/tex]
- [tex]\(|x - 2| + 5 < 4\)[/tex]: no solution
- [tex]\(|3x| - 3 < 3\)[/tex]: [tex]\(-2 < x < 2\)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.