Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the average rate of change of the function [tex]\( f(x) = 5x^2 - 7 \)[/tex] on the interval [tex]\([2, t]\)[/tex], we need to follow these steps:
1. Evaluate the function at the endpoints of the interval:
- At [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5(2)^2 - 7 = 5 \cdot 4 - 7 = 20 - 7 = 13 \][/tex]
- At [tex]\( x = t \)[/tex]:
[tex]\[ f(t) = 5t^2 - 7 \][/tex]
2. Apply the formula for the average rate of change:
The average rate of change of a function [tex]\( f \)[/tex] over an interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \frac{f(b) - f(a)}{b - a} \][/tex]
In this case, the interval is [tex]\([2, t]\)[/tex], so [tex]\( a = 2 \)[/tex] and [tex]\( b = t \)[/tex]. Hence, the average rate of change is:
[tex]\[ \frac{f(t) - f(2)}{t - 2} \][/tex]
3. Substitute the function values into the formula:
We already have:
[tex]\[ f(2) = 13 \quad \text{and} \quad f(t) = 5t^2 - 7 \][/tex]
Therefore, the average rate of change becomes:
[tex]\[ \frac{5t^2 - 7 - 13}{t - 2} \][/tex]
4. Simplify the expression:
Combine the constants in the numerator:
[tex]\[ 5t^2 - 7 - 13 = 5t^2 - 20 \][/tex]
Thus, the formula for the average rate of change is:
[tex]\[ \frac{5t^2 - 20}{t - 2} \][/tex]
So, the expression for the average rate of change of [tex]\( f(x) = 5x^2 - 7 \)[/tex] on the interval [tex]\([2, t]\)[/tex] is:
[tex]\[ \boxed{\frac{5t^2 - 20}{t - 2}} \][/tex]
1. Evaluate the function at the endpoints of the interval:
- At [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5(2)^2 - 7 = 5 \cdot 4 - 7 = 20 - 7 = 13 \][/tex]
- At [tex]\( x = t \)[/tex]:
[tex]\[ f(t) = 5t^2 - 7 \][/tex]
2. Apply the formula for the average rate of change:
The average rate of change of a function [tex]\( f \)[/tex] over an interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \frac{f(b) - f(a)}{b - a} \][/tex]
In this case, the interval is [tex]\([2, t]\)[/tex], so [tex]\( a = 2 \)[/tex] and [tex]\( b = t \)[/tex]. Hence, the average rate of change is:
[tex]\[ \frac{f(t) - f(2)}{t - 2} \][/tex]
3. Substitute the function values into the formula:
We already have:
[tex]\[ f(2) = 13 \quad \text{and} \quad f(t) = 5t^2 - 7 \][/tex]
Therefore, the average rate of change becomes:
[tex]\[ \frac{5t^2 - 7 - 13}{t - 2} \][/tex]
4. Simplify the expression:
Combine the constants in the numerator:
[tex]\[ 5t^2 - 7 - 13 = 5t^2 - 20 \][/tex]
Thus, the formula for the average rate of change is:
[tex]\[ \frac{5t^2 - 20}{t - 2} \][/tex]
So, the expression for the average rate of change of [tex]\( f(x) = 5x^2 - 7 \)[/tex] on the interval [tex]\([2, t]\)[/tex] is:
[tex]\[ \boxed{\frac{5t^2 - 20}{t - 2}} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.