Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's find the boiling point of an aqueous solution containing a nonelectrolyte that freezes at -6.51°C. Here is the step-by-step approach:
1. Determine the Freezing Point Depression:
The freezing point of pure water is 0°C. Here, the solution freezes at -6.51°C. Therefore, the freezing point depression, [tex]\(\Delta T_f\)[/tex], is 6.51°C.
2. Given Constants for Water:
- The freezing point depression constant for water, [tex]\(K_f\)[/tex] is 1.86°C·kg/mol
- The boiling point elevation constant for water, [tex]\(K_b\)[/tex] is 0.512°C·kg/mol
3. Calculate Molality:
The freezing point depression equation is:
[tex]\[ \Delta T_f = K_f \times m \][/tex]
where [tex]\( m \)[/tex] is the molality of the solution. Rearrange this equation to find the molality:
[tex]\[ m = \frac{\Delta T_f}{K_f} \][/tex]
Substituting the given values:
[tex]\[ m = \frac{6.51}{1.86} \approx 3.5 \, \text{mol/kg} \][/tex]
4. Calculate the Boiling Point Elevation:
The boiling point elevation equation is:
[tex]\[ \Delta T_b = K_b \times m \][/tex]
Substitute the values into the equation:
[tex]\[ \Delta T_b = 0.512 \times 3.5 \approx 1.79 \, \text{°C} \][/tex]
5. Determine the Boiling Point of the Solution:
The normal boiling point of pure water is 100°C. The boiling point of the solution can be found by adding the boiling point elevation to the normal boiling point:
[tex]\[ \text{Boiling point of the solution} = 100 \, \text{°C} + 1.79 \, \text{°C} \approx 101.79 \, \text{°C} \][/tex]
Therefore, the boiling point of the solution is approximately 101.8°C.
So, the correct answer is:
b. 101.8°C
1. Determine the Freezing Point Depression:
The freezing point of pure water is 0°C. Here, the solution freezes at -6.51°C. Therefore, the freezing point depression, [tex]\(\Delta T_f\)[/tex], is 6.51°C.
2. Given Constants for Water:
- The freezing point depression constant for water, [tex]\(K_f\)[/tex] is 1.86°C·kg/mol
- The boiling point elevation constant for water, [tex]\(K_b\)[/tex] is 0.512°C·kg/mol
3. Calculate Molality:
The freezing point depression equation is:
[tex]\[ \Delta T_f = K_f \times m \][/tex]
where [tex]\( m \)[/tex] is the molality of the solution. Rearrange this equation to find the molality:
[tex]\[ m = \frac{\Delta T_f}{K_f} \][/tex]
Substituting the given values:
[tex]\[ m = \frac{6.51}{1.86} \approx 3.5 \, \text{mol/kg} \][/tex]
4. Calculate the Boiling Point Elevation:
The boiling point elevation equation is:
[tex]\[ \Delta T_b = K_b \times m \][/tex]
Substitute the values into the equation:
[tex]\[ \Delta T_b = 0.512 \times 3.5 \approx 1.79 \, \text{°C} \][/tex]
5. Determine the Boiling Point of the Solution:
The normal boiling point of pure water is 100°C. The boiling point of the solution can be found by adding the boiling point elevation to the normal boiling point:
[tex]\[ \text{Boiling point of the solution} = 100 \, \text{°C} + 1.79 \, \text{°C} \approx 101.79 \, \text{°C} \][/tex]
Therefore, the boiling point of the solution is approximately 101.8°C.
So, the correct answer is:
b. 101.8°C
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.