At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the number of moles of [tex]\( \text{NO} \)[/tex] formed from 2.58 moles of [tex]\( \text{NO}_2 \)[/tex] given the balanced chemical reaction:
[tex]\[ 3 \, \text{NO}_2(g) + \text{H}_2\text{O}(l) \rightarrow 2 \, \text{HNO}_3(aq) + \text{NO}(g) \][/tex]
follow these steps:
1. Identify the stoichiometric coefficients:
- From the balanced reaction, 3 moles of [tex]\( \text{NO}_2 \)[/tex] produce 1 mole of [tex]\( \text{NO} \)[/tex].
2. Write the mole ratio:
- The ratio of moles of [tex]\( \text{NO} \)[/tex] to moles of [tex]\( \text{NO}_2 \)[/tex] is [tex]\( \frac{1 \text{ mole NO}}{3 \text{ moles NO}_2} \)[/tex].
3. Calculate the moles of [tex]\( \text{NO} \)[/tex] produced:
- Using the mole ratio, you can find the moles of [tex]\( \text{NO} \)[/tex] produced from 2.58 moles of [tex]\( \text{NO}_2 \)[/tex].
[tex]\[ \text{moles of NO} = 2.58 \, \text{moles of} \, \text{NO}_2 \times \frac{1 \text{ mole of NO}}{3 \text{ moles of} \, \text{NO}_2} \][/tex]
4. Perform the multiplication:
- Calculate the result:
[tex]\[ \text{moles of NO} = 2.58 \times \frac{1}{3} \][/tex]
Therefore, the number of moles of [tex]\( \text{NO} \)[/tex] produced is [tex]\( 0.86 \)[/tex] moles.
So, from 2.58 moles of [tex]\( \text{NO}_2 \)[/tex] with plenty of water present, 0.86 moles of [tex]\( \text{NO} \)[/tex] will be formed.
[tex]\[ 3 \, \text{NO}_2(g) + \text{H}_2\text{O}(l) \rightarrow 2 \, \text{HNO}_3(aq) + \text{NO}(g) \][/tex]
follow these steps:
1. Identify the stoichiometric coefficients:
- From the balanced reaction, 3 moles of [tex]\( \text{NO}_2 \)[/tex] produce 1 mole of [tex]\( \text{NO} \)[/tex].
2. Write the mole ratio:
- The ratio of moles of [tex]\( \text{NO} \)[/tex] to moles of [tex]\( \text{NO}_2 \)[/tex] is [tex]\( \frac{1 \text{ mole NO}}{3 \text{ moles NO}_2} \)[/tex].
3. Calculate the moles of [tex]\( \text{NO} \)[/tex] produced:
- Using the mole ratio, you can find the moles of [tex]\( \text{NO} \)[/tex] produced from 2.58 moles of [tex]\( \text{NO}_2 \)[/tex].
[tex]\[ \text{moles of NO} = 2.58 \, \text{moles of} \, \text{NO}_2 \times \frac{1 \text{ mole of NO}}{3 \text{ moles of} \, \text{NO}_2} \][/tex]
4. Perform the multiplication:
- Calculate the result:
[tex]\[ \text{moles of NO} = 2.58 \times \frac{1}{3} \][/tex]
Therefore, the number of moles of [tex]\( \text{NO} \)[/tex] produced is [tex]\( 0.86 \)[/tex] moles.
So, from 2.58 moles of [tex]\( \text{NO}_2 \)[/tex] with plenty of water present, 0.86 moles of [tex]\( \text{NO} \)[/tex] will be formed.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.