Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's address each part of your question in a detailed, step-by-step manner.
### 4) Finding the critical points for [tex]\( f(x) = x^3 - 12x + 5 \)[/tex]
To find the critical points of the function, we need to identify where the first derivative equals zero or does not exist.
1. Compute the first derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(x^3 - 12x + 5) = 3x^2 - 12. \][/tex]
2. Set the first derivative equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ 3x^2 - 12 = 0. \][/tex]
3. Solve the equation:
[tex]\[ 3x^2 = 12 \implies x^2 = 4 \implies x = \pm 2. \][/tex]
Thus, the critical points are at [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].
### 5) Change of direction for the position function [tex]\( s(t) = t^2 - 7t + 6 \)[/tex] within [tex]\( 0 \leq t \leq 7 \)[/tex]
To determine when the body changes direction, we need to find when the velocity [tex]\( \frac{ds}{dt} \)[/tex] changes sign. This happens when [tex]\( \frac{ds}{dt} = 0 \)[/tex].
1. Compute the first derivative of [tex]\( s(t) \)[/tex]:
[tex]\[ \frac{ds}{dt} = \frac{d}{dt}(t^2 - 7t + 6) = 2t - 7. \][/tex]
2. Set the first derivative equal to zero and solve for [tex]\( t \)[/tex]:
[tex]\[ 2t - 7 = 0 \implies t = \frac{7}{2} = 3.5. \][/tex]
3. Check if [tex]\( t = 3.5 \)[/tex] is within the interval [tex]\( 0 \leq t \leq 7 \)[/tex]:
Indeed, [tex]\( 3.5 \)[/tex] is in the interval.
Hence, the body changes direction at [tex]\( t = 3.5 \)[/tex] seconds.
### 6) Derivative of [tex]\( y = \left(\frac{1}{x^2} + 2\right)\left(x^2 - \frac{1}{x^2} + 2\right) \)[/tex]
To find the derivative, we use the product rule [tex]\( (uv)' = u'v + uv' \)[/tex].
1. Let [tex]\( u = \frac{1}{x^2} + 2 \)[/tex] and [tex]\( v = x^2 - \frac{1}{x^2} + 2 \)[/tex].
2. First, compute the derivatives of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ u = \frac{1}{x^2} + 2 \implies u' = -\frac{2}{x^3}, \][/tex]
[tex]\[ v = x^2 - \frac{1}{x^2} + 2 \implies v' = 2x + \frac{2}{x^3}. \][/tex]
3. Apply the product rule:
[tex]\[ y' = u'v + uv' = \left(-\frac{2}{x^3}\right)\left(x^2 - \frac{1}{x^2} + 2\right) + \left(\frac{1}{x^2} + 2\right)\left(2x + \frac{2}{x^3}\right). \][/tex]
Simplify each term separately:
[tex]\[ u'v = \left(-\frac{2}{x^3}\right)\left(x^2 - \frac{1}{x^2} + 2\right) = -\frac{2x^2}{x^3} + \frac{2}{x^5} - \frac{4}{x^3} = -\frac{2}{x} + \frac{2}{x^5} - \frac{4}{x^3}, \][/tex]
[tex]\[ uv' = \left(\frac{1}{x^2} + 2\right)\left(2x + \frac{2}{x^3}\right) = \frac{2x}{x^2} + 4x + \frac{2}{x^5} + \frac{4}{x^3} = \frac{2}{x} + 4x + \frac{2}{x^5} + \frac{4}{x^3}. \][/tex]
Combine both results:
[tex]\[ y' = \left(-\frac{2}{x} + \frac{2}{x^5} - \frac{4}{x^3}\right) + \left(\frac{2}{x} + 4x + \frac{2}{x^5} + \frac{4}{x^3}\right) = 4x + \frac{4}{x^5}. \][/tex]
Thus, the correct derivative is:
[tex]\[ y' = 4x + \frac{4}{x^5}. \][/tex]
So, the correct answer is:
[tex]\[ \boxed{C) \frac{4}{x^5} + 4x} \][/tex]
### 4) Finding the critical points for [tex]\( f(x) = x^3 - 12x + 5 \)[/tex]
To find the critical points of the function, we need to identify where the first derivative equals zero or does not exist.
1. Compute the first derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(x^3 - 12x + 5) = 3x^2 - 12. \][/tex]
2. Set the first derivative equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ 3x^2 - 12 = 0. \][/tex]
3. Solve the equation:
[tex]\[ 3x^2 = 12 \implies x^2 = 4 \implies x = \pm 2. \][/tex]
Thus, the critical points are at [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].
### 5) Change of direction for the position function [tex]\( s(t) = t^2 - 7t + 6 \)[/tex] within [tex]\( 0 \leq t \leq 7 \)[/tex]
To determine when the body changes direction, we need to find when the velocity [tex]\( \frac{ds}{dt} \)[/tex] changes sign. This happens when [tex]\( \frac{ds}{dt} = 0 \)[/tex].
1. Compute the first derivative of [tex]\( s(t) \)[/tex]:
[tex]\[ \frac{ds}{dt} = \frac{d}{dt}(t^2 - 7t + 6) = 2t - 7. \][/tex]
2. Set the first derivative equal to zero and solve for [tex]\( t \)[/tex]:
[tex]\[ 2t - 7 = 0 \implies t = \frac{7}{2} = 3.5. \][/tex]
3. Check if [tex]\( t = 3.5 \)[/tex] is within the interval [tex]\( 0 \leq t \leq 7 \)[/tex]:
Indeed, [tex]\( 3.5 \)[/tex] is in the interval.
Hence, the body changes direction at [tex]\( t = 3.5 \)[/tex] seconds.
### 6) Derivative of [tex]\( y = \left(\frac{1}{x^2} + 2\right)\left(x^2 - \frac{1}{x^2} + 2\right) \)[/tex]
To find the derivative, we use the product rule [tex]\( (uv)' = u'v + uv' \)[/tex].
1. Let [tex]\( u = \frac{1}{x^2} + 2 \)[/tex] and [tex]\( v = x^2 - \frac{1}{x^2} + 2 \)[/tex].
2. First, compute the derivatives of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ u = \frac{1}{x^2} + 2 \implies u' = -\frac{2}{x^3}, \][/tex]
[tex]\[ v = x^2 - \frac{1}{x^2} + 2 \implies v' = 2x + \frac{2}{x^3}. \][/tex]
3. Apply the product rule:
[tex]\[ y' = u'v + uv' = \left(-\frac{2}{x^3}\right)\left(x^2 - \frac{1}{x^2} + 2\right) + \left(\frac{1}{x^2} + 2\right)\left(2x + \frac{2}{x^3}\right). \][/tex]
Simplify each term separately:
[tex]\[ u'v = \left(-\frac{2}{x^3}\right)\left(x^2 - \frac{1}{x^2} + 2\right) = -\frac{2x^2}{x^3} + \frac{2}{x^5} - \frac{4}{x^3} = -\frac{2}{x} + \frac{2}{x^5} - \frac{4}{x^3}, \][/tex]
[tex]\[ uv' = \left(\frac{1}{x^2} + 2\right)\left(2x + \frac{2}{x^3}\right) = \frac{2x}{x^2} + 4x + \frac{2}{x^5} + \frac{4}{x^3} = \frac{2}{x} + 4x + \frac{2}{x^5} + \frac{4}{x^3}. \][/tex]
Combine both results:
[tex]\[ y' = \left(-\frac{2}{x} + \frac{2}{x^5} - \frac{4}{x^3}\right) + \left(\frac{2}{x} + 4x + \frac{2}{x^5} + \frac{4}{x^3}\right) = 4x + \frac{4}{x^5}. \][/tex]
Thus, the correct derivative is:
[tex]\[ y' = 4x + \frac{4}{x^5}. \][/tex]
So, the correct answer is:
[tex]\[ \boxed{C) \frac{4}{x^5} + 4x} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.