Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Determine all critical points for the function [tex]\( f(x) = x^3 - 12x + 5 \)[/tex].

To find the critical points, we need to solve for [tex]\( f'(x) = 0 \)[/tex].

1. [tex]\( f'(x) = 3x^2 - 12 \)[/tex]
2. Set [tex]\( 3x^2 - 12 = 0 \)[/tex]
3. Solving, we get:
[tex]\[ \sqrt{x^2} = \sqrt{4} \][/tex]
[tex]\[ x = \pm 2 \][/tex]

The critical points are [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].

---

The position of a body moving on a coordinate line is given by [tex]\( s = t^2 - 7t + 6 \)[/tex], with [tex]\( s \)[/tex] in meters and [tex]\( t \)[/tex] in seconds. When, if ever, during the interval [tex]\( 0 \leq t \leq 7 \)[/tex] does the body change direction?

To determine when the body changes direction, we need to find when [tex]\( v(t) = s'(t) = 0 \)[/tex]:

1. [tex]\( s'(t) = 2t - 7 \)[/tex]
2. Set [tex]\( 2t - 7 = 0 \)[/tex]
3. Solving, we get:
[tex]\[ t = 3.5 \][/tex]

The body changes direction at [tex]\( t = 3.5 \)[/tex] seconds within the interval [tex]\( 0 \leq t \leq 7 \)[/tex].

---

Find the derivative of [tex]\( y = \left( \frac{1}{x^2} + 2 \right) \left( x^2 - \frac{1}{x^2} + 2 \right) \)[/tex].

A) [tex]\( -\frac{4}{x^5} - 4x \)[/tex]
B) [tex]\( \frac{4}{x^3} + 4x \)[/tex]
C) [tex]\( \frac{4}{x^5} + 4x \)[/tex]
D) [tex]\( -\frac{1}{x^5} \)[/tex]


Sagot :

Let's address each part of your question in a detailed, step-by-step manner.

### 4) Finding the critical points for [tex]\( f(x) = x^3 - 12x + 5 \)[/tex]

To find the critical points of the function, we need to identify where the first derivative equals zero or does not exist.

1. Compute the first derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(x^3 - 12x + 5) = 3x^2 - 12. \][/tex]

2. Set the first derivative equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ 3x^2 - 12 = 0. \][/tex]

3. Solve the equation:
[tex]\[ 3x^2 = 12 \implies x^2 = 4 \implies x = \pm 2. \][/tex]

Thus, the critical points are at [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].

### 5) Change of direction for the position function [tex]\( s(t) = t^2 - 7t + 6 \)[/tex] within [tex]\( 0 \leq t \leq 7 \)[/tex]

To determine when the body changes direction, we need to find when the velocity [tex]\( \frac{ds}{dt} \)[/tex] changes sign. This happens when [tex]\( \frac{ds}{dt} = 0 \)[/tex].

1. Compute the first derivative of [tex]\( s(t) \)[/tex]:
[tex]\[ \frac{ds}{dt} = \frac{d}{dt}(t^2 - 7t + 6) = 2t - 7. \][/tex]

2. Set the first derivative equal to zero and solve for [tex]\( t \)[/tex]:
[tex]\[ 2t - 7 = 0 \implies t = \frac{7}{2} = 3.5. \][/tex]

3. Check if [tex]\( t = 3.5 \)[/tex] is within the interval [tex]\( 0 \leq t \leq 7 \)[/tex]:
Indeed, [tex]\( 3.5 \)[/tex] is in the interval.

Hence, the body changes direction at [tex]\( t = 3.5 \)[/tex] seconds.

### 6) Derivative of [tex]\( y = \left(\frac{1}{x^2} + 2\right)\left(x^2 - \frac{1}{x^2} + 2\right) \)[/tex]

To find the derivative, we use the product rule [tex]\( (uv)' = u'v + uv' \)[/tex].

1. Let [tex]\( u = \frac{1}{x^2} + 2 \)[/tex] and [tex]\( v = x^2 - \frac{1}{x^2} + 2 \)[/tex].

2. First, compute the derivatives of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ u = \frac{1}{x^2} + 2 \implies u' = -\frac{2}{x^3}, \][/tex]
[tex]\[ v = x^2 - \frac{1}{x^2} + 2 \implies v' = 2x + \frac{2}{x^3}. \][/tex]

3. Apply the product rule:
[tex]\[ y' = u'v + uv' = \left(-\frac{2}{x^3}\right)\left(x^2 - \frac{1}{x^2} + 2\right) + \left(\frac{1}{x^2} + 2\right)\left(2x + \frac{2}{x^3}\right). \][/tex]

Simplify each term separately:
[tex]\[ u'v = \left(-\frac{2}{x^3}\right)\left(x^2 - \frac{1}{x^2} + 2\right) = -\frac{2x^2}{x^3} + \frac{2}{x^5} - \frac{4}{x^3} = -\frac{2}{x} + \frac{2}{x^5} - \frac{4}{x^3}, \][/tex]
[tex]\[ uv' = \left(\frac{1}{x^2} + 2\right)\left(2x + \frac{2}{x^3}\right) = \frac{2x}{x^2} + 4x + \frac{2}{x^5} + \frac{4}{x^3} = \frac{2}{x} + 4x + \frac{2}{x^5} + \frac{4}{x^3}. \][/tex]

Combine both results:
[tex]\[ y' = \left(-\frac{2}{x} + \frac{2}{x^5} - \frac{4}{x^3}\right) + \left(\frac{2}{x} + 4x + \frac{2}{x^5} + \frac{4}{x^3}\right) = 4x + \frac{4}{x^5}. \][/tex]

Thus, the correct derivative is:
[tex]\[ y' = 4x + \frac{4}{x^5}. \][/tex]

So, the correct answer is:
[tex]\[ \boxed{C) \frac{4}{x^5} + 4x} \][/tex]