At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Determine all critical points for the function [tex]\( f(x) = x^3 - 12x + 5 \)[/tex].

To find the critical points, we need to solve for [tex]\( f'(x) = 0 \)[/tex].

1. [tex]\( f'(x) = 3x^2 - 12 \)[/tex]
2. Set [tex]\( 3x^2 - 12 = 0 \)[/tex]
3. Solving, we get:
[tex]\[ \sqrt{x^2} = \sqrt{4} \][/tex]
[tex]\[ x = \pm 2 \][/tex]

The critical points are [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].

---

The position of a body moving on a coordinate line is given by [tex]\( s = t^2 - 7t + 6 \)[/tex], with [tex]\( s \)[/tex] in meters and [tex]\( t \)[/tex] in seconds. When, if ever, during the interval [tex]\( 0 \leq t \leq 7 \)[/tex] does the body change direction?

To determine when the body changes direction, we need to find when [tex]\( v(t) = s'(t) = 0 \)[/tex]:

1. [tex]\( s'(t) = 2t - 7 \)[/tex]
2. Set [tex]\( 2t - 7 = 0 \)[/tex]
3. Solving, we get:
[tex]\[ t = 3.5 \][/tex]

The body changes direction at [tex]\( t = 3.5 \)[/tex] seconds within the interval [tex]\( 0 \leq t \leq 7 \)[/tex].

---

Find the derivative of [tex]\( y = \left( \frac{1}{x^2} + 2 \right) \left( x^2 - \frac{1}{x^2} + 2 \right) \)[/tex].

A) [tex]\( -\frac{4}{x^5} - 4x \)[/tex]
B) [tex]\( \frac{4}{x^3} + 4x \)[/tex]
C) [tex]\( \frac{4}{x^5} + 4x \)[/tex]
D) [tex]\( -\frac{1}{x^5} \)[/tex]


Sagot :

Let's address each part of your question in a detailed, step-by-step manner.

### 4) Finding the critical points for [tex]\( f(x) = x^3 - 12x + 5 \)[/tex]

To find the critical points of the function, we need to identify where the first derivative equals zero or does not exist.

1. Compute the first derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(x^3 - 12x + 5) = 3x^2 - 12. \][/tex]

2. Set the first derivative equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ 3x^2 - 12 = 0. \][/tex]

3. Solve the equation:
[tex]\[ 3x^2 = 12 \implies x^2 = 4 \implies x = \pm 2. \][/tex]

Thus, the critical points are at [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].

### 5) Change of direction for the position function [tex]\( s(t) = t^2 - 7t + 6 \)[/tex] within [tex]\( 0 \leq t \leq 7 \)[/tex]

To determine when the body changes direction, we need to find when the velocity [tex]\( \frac{ds}{dt} \)[/tex] changes sign. This happens when [tex]\( \frac{ds}{dt} = 0 \)[/tex].

1. Compute the first derivative of [tex]\( s(t) \)[/tex]:
[tex]\[ \frac{ds}{dt} = \frac{d}{dt}(t^2 - 7t + 6) = 2t - 7. \][/tex]

2. Set the first derivative equal to zero and solve for [tex]\( t \)[/tex]:
[tex]\[ 2t - 7 = 0 \implies t = \frac{7}{2} = 3.5. \][/tex]

3. Check if [tex]\( t = 3.5 \)[/tex] is within the interval [tex]\( 0 \leq t \leq 7 \)[/tex]:
Indeed, [tex]\( 3.5 \)[/tex] is in the interval.

Hence, the body changes direction at [tex]\( t = 3.5 \)[/tex] seconds.

### 6) Derivative of [tex]\( y = \left(\frac{1}{x^2} + 2\right)\left(x^2 - \frac{1}{x^2} + 2\right) \)[/tex]

To find the derivative, we use the product rule [tex]\( (uv)' = u'v + uv' \)[/tex].

1. Let [tex]\( u = \frac{1}{x^2} + 2 \)[/tex] and [tex]\( v = x^2 - \frac{1}{x^2} + 2 \)[/tex].

2. First, compute the derivatives of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ u = \frac{1}{x^2} + 2 \implies u' = -\frac{2}{x^3}, \][/tex]
[tex]\[ v = x^2 - \frac{1}{x^2} + 2 \implies v' = 2x + \frac{2}{x^3}. \][/tex]

3. Apply the product rule:
[tex]\[ y' = u'v + uv' = \left(-\frac{2}{x^3}\right)\left(x^2 - \frac{1}{x^2} + 2\right) + \left(\frac{1}{x^2} + 2\right)\left(2x + \frac{2}{x^3}\right). \][/tex]

Simplify each term separately:
[tex]\[ u'v = \left(-\frac{2}{x^3}\right)\left(x^2 - \frac{1}{x^2} + 2\right) = -\frac{2x^2}{x^3} + \frac{2}{x^5} - \frac{4}{x^3} = -\frac{2}{x} + \frac{2}{x^5} - \frac{4}{x^3}, \][/tex]
[tex]\[ uv' = \left(\frac{1}{x^2} + 2\right)\left(2x + \frac{2}{x^3}\right) = \frac{2x}{x^2} + 4x + \frac{2}{x^5} + \frac{4}{x^3} = \frac{2}{x} + 4x + \frac{2}{x^5} + \frac{4}{x^3}. \][/tex]

Combine both results:
[tex]\[ y' = \left(-\frac{2}{x} + \frac{2}{x^5} - \frac{4}{x^3}\right) + \left(\frac{2}{x} + 4x + \frac{2}{x^5} + \frac{4}{x^3}\right) = 4x + \frac{4}{x^5}. \][/tex]

Thus, the correct derivative is:
[tex]\[ y' = 4x + \frac{4}{x^5}. \][/tex]

So, the correct answer is:
[tex]\[ \boxed{C) \frac{4}{x^5} + 4x} \][/tex]