At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, I'll guide you through solving the two problems step-by-step.
### Problem 8: Finding [tex]\( \frac{dy}{dx} \)[/tex] using implicit differentiation
Given the equation:
[tex]\[ x^3 + 3x^2y + y^3 = 8 \][/tex]
1. Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(x^3 + 3x^2y + y^3) = \frac{d}{dx}(8) \][/tex]
The derivative of the right-hand side, a constant, is 0:
[tex]\[ \frac{d}{dx}(8) = 0 \][/tex]
2. Apply the product rule and chain rule to the left-hand side:
- The derivative of [tex]\( x^3 \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( 3x^2 \)[/tex].
- For [tex]\( 3x^2y \)[/tex], use the product rule:
[tex]\[ \frac{d}{dx}(3x^2y) = 3x^2\frac{dy}{dx} + 6xy \][/tex]
- The derivative of [tex]\( y^3 \)[/tex] with respect to [tex]\( x \)[/tex] using the chain rule is:
[tex]\[ \frac{d}{dx}(y^3) = 3y^2 \frac{dy}{dx} \][/tex]
3. Combine these derivatives:
[tex]\[ 3x^2 + 3x^2\frac{dy}{dx} + 6xy + 3y^2\frac{dy}{dx} = 0 \][/tex]
4. Collect the terms involving [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ 3x^2 + 6xy + \left(3x^2 + 3y^2\right) \frac{dy}{dx} = 0 \][/tex]
5. Isolate [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ 6xy + 3x^2 = - \left(3x^2 + 3y^2\right) \frac{dy}{dx} \][/tex]
[tex]\[ 6xy + 3x^2 = - 3(x^2 + y^2) \frac{dy}{dx} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{-(6xy + 3x^2)}{- 3(x^2 + y^2)} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{6xy + 3x^2}{3(x^2 + y^2)} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{x^2 + 2xy}{x^2 + y^2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{x^2 + 2xy}{x^2 + y^2}} \][/tex]
Neither of the choices A or B match the calculation exactly, so double-checking and correcting one of the computations or choices might be necessary.
### Problem 9: Find the linearization [tex]\( L(x) \)[/tex] of [tex]\( f(x) \)[/tex] at [tex]\( x=a \)[/tex]
Given:
[tex]\[ f(x) = 2x^2 + 5x + 5 \][/tex]
[tex]\[ a = 3 \][/tex]
1. Find [tex]\( f'(x) \)[/tex], the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(2x^2 + 5x + 5) \][/tex]
[tex]\[ f'(x) = 4x + 5 \][/tex]
2. Evaluate [tex]\( f(a) \)[/tex] and [tex]\( f'(a) \)[/tex]:
[tex]\[ f(3) = 2(3)^2 + 5(3) + 5 \][/tex]
[tex]\[ f(3) = 2 \cdot 9 + 15 + 5 \][/tex]
[tex]\[ f(3) = 18 + 15 + 5 \][/tex]
[tex]\[ f(3) = 38 \][/tex]
[tex]\[ f'(3) = 4(3) + 5 \][/tex]
[tex]\[ f'(3) = 12 + 5 \][/tex]
[tex]\[ f'(3) = 17 \][/tex]
3. Form the linearization [tex]\( L(x) \)[/tex]:
The linearization at [tex]\( x = a \)[/tex] is given by:
[tex]\[ L(x) = f(a) + f'(a)(x - a) \][/tex]
[tex]\[ L(x) = 38 + 17(x - 3) \][/tex]
4. Simplify [tex]\( L(x) \)[/tex]:
[tex]\[ L(x) = 38 + 17x - 51 \][/tex]
[tex]\[ L(x) = 17x - 13 \][/tex]
So, the linearization [tex]\( L(x) \)[/tex] at [tex]\( x = 3 \)[/tex] is:
[tex]\[ \boxed{L(x) = 38} \][/tex]
If should you not simplify it.
### Problem 8: Finding [tex]\( \frac{dy}{dx} \)[/tex] using implicit differentiation
Given the equation:
[tex]\[ x^3 + 3x^2y + y^3 = 8 \][/tex]
1. Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(x^3 + 3x^2y + y^3) = \frac{d}{dx}(8) \][/tex]
The derivative of the right-hand side, a constant, is 0:
[tex]\[ \frac{d}{dx}(8) = 0 \][/tex]
2. Apply the product rule and chain rule to the left-hand side:
- The derivative of [tex]\( x^3 \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( 3x^2 \)[/tex].
- For [tex]\( 3x^2y \)[/tex], use the product rule:
[tex]\[ \frac{d}{dx}(3x^2y) = 3x^2\frac{dy}{dx} + 6xy \][/tex]
- The derivative of [tex]\( y^3 \)[/tex] with respect to [tex]\( x \)[/tex] using the chain rule is:
[tex]\[ \frac{d}{dx}(y^3) = 3y^2 \frac{dy}{dx} \][/tex]
3. Combine these derivatives:
[tex]\[ 3x^2 + 3x^2\frac{dy}{dx} + 6xy + 3y^2\frac{dy}{dx} = 0 \][/tex]
4. Collect the terms involving [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ 3x^2 + 6xy + \left(3x^2 + 3y^2\right) \frac{dy}{dx} = 0 \][/tex]
5. Isolate [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ 6xy + 3x^2 = - \left(3x^2 + 3y^2\right) \frac{dy}{dx} \][/tex]
[tex]\[ 6xy + 3x^2 = - 3(x^2 + y^2) \frac{dy}{dx} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{-(6xy + 3x^2)}{- 3(x^2 + y^2)} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{6xy + 3x^2}{3(x^2 + y^2)} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{x^2 + 2xy}{x^2 + y^2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{x^2 + 2xy}{x^2 + y^2}} \][/tex]
Neither of the choices A or B match the calculation exactly, so double-checking and correcting one of the computations or choices might be necessary.
### Problem 9: Find the linearization [tex]\( L(x) \)[/tex] of [tex]\( f(x) \)[/tex] at [tex]\( x=a \)[/tex]
Given:
[tex]\[ f(x) = 2x^2 + 5x + 5 \][/tex]
[tex]\[ a = 3 \][/tex]
1. Find [tex]\( f'(x) \)[/tex], the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(2x^2 + 5x + 5) \][/tex]
[tex]\[ f'(x) = 4x + 5 \][/tex]
2. Evaluate [tex]\( f(a) \)[/tex] and [tex]\( f'(a) \)[/tex]:
[tex]\[ f(3) = 2(3)^2 + 5(3) + 5 \][/tex]
[tex]\[ f(3) = 2 \cdot 9 + 15 + 5 \][/tex]
[tex]\[ f(3) = 18 + 15 + 5 \][/tex]
[tex]\[ f(3) = 38 \][/tex]
[tex]\[ f'(3) = 4(3) + 5 \][/tex]
[tex]\[ f'(3) = 12 + 5 \][/tex]
[tex]\[ f'(3) = 17 \][/tex]
3. Form the linearization [tex]\( L(x) \)[/tex]:
The linearization at [tex]\( x = a \)[/tex] is given by:
[tex]\[ L(x) = f(a) + f'(a)(x - a) \][/tex]
[tex]\[ L(x) = 38 + 17(x - 3) \][/tex]
4. Simplify [tex]\( L(x) \)[/tex]:
[tex]\[ L(x) = 38 + 17x - 51 \][/tex]
[tex]\[ L(x) = 17x - 13 \][/tex]
So, the linearization [tex]\( L(x) \)[/tex] at [tex]\( x = 3 \)[/tex] is:
[tex]\[ \boxed{L(x) = 38} \][/tex]
If should you not simplify it.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.