Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the expected change in the freezing point of water in a solution of [tex]\( 62.5 \)[/tex] g of barium nitrate ([tex]\(Ba(NO_3)_2\)[/tex]) in 1 kg of water, we need to follow several steps. Here's a detailed step-by-step calculation:
### Step 1: Calculate the number of moles of [tex]\(Ba(NO_3)_2\)[/tex]
The given mass of barium nitrate is [tex]\(62.5 \)[/tex] g and the molar mass of [tex]\(Ba(NO_3)_2\)[/tex] is [tex]\(261 \)[/tex] g/mol. The number of moles can be determined using the formula:
[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{\text{mass}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{62.5 \text{ g}}{261 \text{ g/mol}} \][/tex]
[tex]\[ \text{moles of } Ba(NO_3)_2 \approx 0.239 \text{ moles} \][/tex]
### Step 2: Determining the Van't Hoff factor
Barium nitrate ([tex]\(Ba(NO_3)_2\)[/tex]) dissociates completely in water to form barium ions ([tex]\(Ba^{2+}\)[/tex]) and nitrate ions ([tex]\(NO_3^-\)[/tex]). The dissociation can be represented as:
[tex]\[ Ba(NO_3)_2 \rightarrow Ba^{2+} + 2 NO_3^- \][/tex]
This results in 3 ions (1 [tex]\(Ba^{2+}\)[/tex] ion and 2 [tex]\(NO_3^-\)[/tex] ions).
So, the Van't Hoff factor [tex]\(i\)[/tex] for [tex]\(Ba(NO_3)_2\)[/tex] is:
[tex]\[ i = 3 \][/tex]
### Step 3: Calculate the freezing point depression
The formula for freezing point depression ([tex]\(\Delta T_f\)[/tex]) is:
[tex]\[ \Delta T_f = i \cdot K_f \cdot m \][/tex]
where:
- [tex]\( i \)[/tex] is the Van't Hoff factor
- [tex]\( K_f \)[/tex] is the freezing point depression constant for water ([tex]\(1.86 \ ^\circ C \cdot kg/mol\)[/tex])
- [tex]\( m \)[/tex] is the molality of the solution
The molality [tex]\(m\)[/tex] of the solution is calculated as:
[tex]\[ m = \frac{\text{moles of solute}}{\text{kg of solvent}} \][/tex]
Here, the solvent is water and its mass is 1 kg:
[tex]\[ m = \frac{0.239 \text{ moles}}{1 \text{ kg}} \][/tex]
[tex]\[ m = 0.239 \text{ mol/kg} \][/tex]
Now, substitute these values into the freezing point depression formula:
[tex]\[ \Delta T_f = 3 \cdot 1.86 \ ^\circ C \cdot kg/mol \cdot 0.239 \text{ mol/kg} \][/tex]
[tex]\[ \Delta T_f \approx 1.336 \ ^\circ C \][/tex]
### Conclusion
The freezing point of water decreases by approximately [tex]\(1.336 \ ^\circ C\)[/tex], which means the change in the freezing point is [tex]\(-1.336 \ ^\circ C\)[/tex].
Among the given options, the closest correct answer is:
a. [tex]\(-1.34 ^\circ C\)[/tex]
### Step 1: Calculate the number of moles of [tex]\(Ba(NO_3)_2\)[/tex]
The given mass of barium nitrate is [tex]\(62.5 \)[/tex] g and the molar mass of [tex]\(Ba(NO_3)_2\)[/tex] is [tex]\(261 \)[/tex] g/mol. The number of moles can be determined using the formula:
[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{\text{mass}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{62.5 \text{ g}}{261 \text{ g/mol}} \][/tex]
[tex]\[ \text{moles of } Ba(NO_3)_2 \approx 0.239 \text{ moles} \][/tex]
### Step 2: Determining the Van't Hoff factor
Barium nitrate ([tex]\(Ba(NO_3)_2\)[/tex]) dissociates completely in water to form barium ions ([tex]\(Ba^{2+}\)[/tex]) and nitrate ions ([tex]\(NO_3^-\)[/tex]). The dissociation can be represented as:
[tex]\[ Ba(NO_3)_2 \rightarrow Ba^{2+} + 2 NO_3^- \][/tex]
This results in 3 ions (1 [tex]\(Ba^{2+}\)[/tex] ion and 2 [tex]\(NO_3^-\)[/tex] ions).
So, the Van't Hoff factor [tex]\(i\)[/tex] for [tex]\(Ba(NO_3)_2\)[/tex] is:
[tex]\[ i = 3 \][/tex]
### Step 3: Calculate the freezing point depression
The formula for freezing point depression ([tex]\(\Delta T_f\)[/tex]) is:
[tex]\[ \Delta T_f = i \cdot K_f \cdot m \][/tex]
where:
- [tex]\( i \)[/tex] is the Van't Hoff factor
- [tex]\( K_f \)[/tex] is the freezing point depression constant for water ([tex]\(1.86 \ ^\circ C \cdot kg/mol\)[/tex])
- [tex]\( m \)[/tex] is the molality of the solution
The molality [tex]\(m\)[/tex] of the solution is calculated as:
[tex]\[ m = \frac{\text{moles of solute}}{\text{kg of solvent}} \][/tex]
Here, the solvent is water and its mass is 1 kg:
[tex]\[ m = \frac{0.239 \text{ moles}}{1 \text{ kg}} \][/tex]
[tex]\[ m = 0.239 \text{ mol/kg} \][/tex]
Now, substitute these values into the freezing point depression formula:
[tex]\[ \Delta T_f = 3 \cdot 1.86 \ ^\circ C \cdot kg/mol \cdot 0.239 \text{ mol/kg} \][/tex]
[tex]\[ \Delta T_f \approx 1.336 \ ^\circ C \][/tex]
### Conclusion
The freezing point of water decreases by approximately [tex]\(1.336 \ ^\circ C\)[/tex], which means the change in the freezing point is [tex]\(-1.336 \ ^\circ C\)[/tex].
Among the given options, the closest correct answer is:
a. [tex]\(-1.34 ^\circ C\)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.