Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

22. What is the expected change in the freezing point of water in a solution of 62.5 g of barium nitrate, [tex]$Ba \left( NO _3\right)_2$[/tex], in 1 kg of water? The molar mass of [tex]$Ba \left( NO _3\right)_2$[/tex] is 261 g/mol.

A. [tex]-1.34^{\circ} C[/tex]
B. [tex]-0.1116^{\circ} C[/tex]
C. [tex]-1.86^{\circ} C[/tex]
D. [tex]-0.44^{\circ} C[/tex]

Sagot :

To determine the expected change in the freezing point of water in a solution of [tex]\( 62.5 \)[/tex] g of barium nitrate ([tex]\(Ba(NO_3)_2\)[/tex]) in 1 kg of water, we need to follow several steps. Here's a detailed step-by-step calculation:

### Step 1: Calculate the number of moles of [tex]\(Ba(NO_3)_2\)[/tex]

The given mass of barium nitrate is [tex]\(62.5 \)[/tex] g and the molar mass of [tex]\(Ba(NO_3)_2\)[/tex] is [tex]\(261 \)[/tex] g/mol. The number of moles can be determined using the formula:

[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{\text{mass}}{\text{molar mass}} \][/tex]

[tex]\[ \text{moles of } Ba(NO_3)_2 = \frac{62.5 \text{ g}}{261 \text{ g/mol}} \][/tex]

[tex]\[ \text{moles of } Ba(NO_3)_2 \approx 0.239 \text{ moles} \][/tex]

### Step 2: Determining the Van't Hoff factor

Barium nitrate ([tex]\(Ba(NO_3)_2\)[/tex]) dissociates completely in water to form barium ions ([tex]\(Ba^{2+}\)[/tex]) and nitrate ions ([tex]\(NO_3^-\)[/tex]). The dissociation can be represented as:

[tex]\[ Ba(NO_3)_2 \rightarrow Ba^{2+} + 2 NO_3^- \][/tex]

This results in 3 ions (1 [tex]\(Ba^{2+}\)[/tex] ion and 2 [tex]\(NO_3^-\)[/tex] ions).

So, the Van't Hoff factor [tex]\(i\)[/tex] for [tex]\(Ba(NO_3)_2\)[/tex] is:

[tex]\[ i = 3 \][/tex]

### Step 3: Calculate the freezing point depression

The formula for freezing point depression ([tex]\(\Delta T_f\)[/tex]) is:

[tex]\[ \Delta T_f = i \cdot K_f \cdot m \][/tex]

where:
- [tex]\( i \)[/tex] is the Van't Hoff factor
- [tex]\( K_f \)[/tex] is the freezing point depression constant for water ([tex]\(1.86 \ ^\circ C \cdot kg/mol\)[/tex])
- [tex]\( m \)[/tex] is the molality of the solution

The molality [tex]\(m\)[/tex] of the solution is calculated as:

[tex]\[ m = \frac{\text{moles of solute}}{\text{kg of solvent}} \][/tex]

Here, the solvent is water and its mass is 1 kg:

[tex]\[ m = \frac{0.239 \text{ moles}}{1 \text{ kg}} \][/tex]

[tex]\[ m = 0.239 \text{ mol/kg} \][/tex]

Now, substitute these values into the freezing point depression formula:

[tex]\[ \Delta T_f = 3 \cdot 1.86 \ ^\circ C \cdot kg/mol \cdot 0.239 \text{ mol/kg} \][/tex]

[tex]\[ \Delta T_f \approx 1.336 \ ^\circ C \][/tex]

### Conclusion

The freezing point of water decreases by approximately [tex]\(1.336 \ ^\circ C\)[/tex], which means the change in the freezing point is [tex]\(-1.336 \ ^\circ C\)[/tex].

Among the given options, the closest correct answer is:

a. [tex]\(-1.34 ^\circ C\)[/tex]