At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

If a projectile is launched vertically upward from the ground with an initial velocity of 50 ft/sec, then neglecting air resistance, its height [tex]\( s \)[/tex] (in feet) above the ground [tex]\( t \)[/tex] seconds after projection is given by [tex]\( s = -16t^2 + 50t \)[/tex].

Which equation should be used to determine the time at which the height of the projectile reaches 20 ft?

[tex]\[ -16t^2 + 50t = 20 \][/tex]


Sagot :

To determine the time at which the height of the projectile reaches 20 feet, we start with the given height equation for the projectile, which is:
[tex]\[ s = -16t^2 + 50t \][/tex]

We need to find the time [tex]\( t \)[/tex] when the height [tex]\( s \)[/tex] is 20 feet. So, we set [tex]\( s = 20 \)[/tex]:
[tex]\[ 20 = -16t^2 + 50t \][/tex]

Next, we rearrange this equation to form a standard quadratic equation. The standard form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. Substituting in our equation, we get:
[tex]\[ -16t^2 + 50t - 20 = 0 \][/tex]

Now we have a quadratic equation:
[tex]\[ -16t^2 + 50t - 20 = 0 \][/tex]

To solve for [tex]\( t \)[/tex], we can use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are the coefficients from the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex]. In our equation:
[tex]\[ a = -16, \][/tex]
[tex]\[ b = 50, \][/tex]
[tex]\[ c = -20 \][/tex]

First, we calculate the discriminant ([tex]\( \Delta \)[/tex]):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = 50^2 - 4(-16)(-20) \][/tex]
[tex]\[ \Delta = 2500 - 1280 \][/tex]
[tex]\[ \Delta = 1220 \][/tex]

Now, we find the two possible values for [tex]\( t \)[/tex] using the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ t = \frac{-50 \pm \sqrt{1220}}{2(-16)} \][/tex]

This yields two solutions:
[tex]\[ t_1 = \frac{-50 + \sqrt{1220}}{2(-16)} \approx 0.47 \][/tex]
[tex]\[ t_2 = \frac{-50 - \sqrt{1220}}{2(-16)} \approx 2.65 \][/tex]

Thus, the times when the projectile reaches a height of 20 feet are approximately [tex]\( t_1 = 0.47 \)[/tex] seconds and [tex]\( t_2 = 2.65 \)[/tex] seconds.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.