Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Solve for x:

[tex]\[ 3x = 6x - 2 \][/tex]

---
as constant
\begin{tabular}{|l|l|}
\hline
Standard atmospheric pressure & [tex]\( R=0.0821 \frac{ L \cdot atm }{ mol \cdot K } \)[/tex] \\
\hline
Atmospheric pressure to Kelvin conversion & [tex]\( 1 \, atm = 101.3 \, kPa \)[/tex] \\
\hline
\end{tabular}

A volleyball is full of pressurized air. The air temperature is [tex]\( 24.6^{\circ} C \)[/tex]. The volleyball's absolute pressure is 130.75 kilopascals, and its volume is 5.27 liters. How many moles of air are inside the volleyball?

A. 0.278 mol
B. 3.37 mol
C. 3.59 mol
D. 25.2 mol
E. 28.0 mol


Sagot :

To determine the number of moles of air inside the volleyball, we will use the ideal gas law, which is given by the formula:

[tex]\[ PV = nRT \][/tex]

where:
- [tex]\( P \)[/tex] is the pressure,
- [tex]\( V \)[/tex] is the volume,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the universal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin.

First, let's identify the given values and convert them to the proper units:

1. Pressure ([tex]\( P \)[/tex]):
- Given pressure: 130.75 kilopascals (kPa)
- Conversion to atmospheres (atm): [tex]\( 1 \text{ atm} = 101.3 \text{ kPa} \)[/tex]
- Therefore, pressure in atmospheres: [tex]\( \frac{130.75 \text{ kPa}}{101.3 \text{ kPa/atm}} \)[/tex]

2. Temperature ([tex]\( T \)[/tex]):
- Given temperature: [tex]\( 24.6^{\circ} \text{C} \)[/tex]
- Conversion to Kelvin: [tex]\( T(K) = 24.6 + 273.15 \)[/tex]

3. Volume ([tex]\( V \)[/tex]):
- Given volume: 5.27 liters (no conversion needed)

4. Universal gas constant ([tex]\( R \)[/tex]):
- Given as [tex]\( 0.0821 \frac{L \cdot \text{atm}}{\text{mol} \cdot K} \)[/tex]

To find the number of moles ([tex]\( n \)[/tex]), we rearrange the ideal gas law to solve for [tex]\( n \)[/tex]:

[tex]\[ n = \frac{PV}{RT} \][/tex]

Now, substitute the given values into the equation:

1. Convert pressure to atmospheres:

[tex]\[ P = \frac{130.75 \text{ kPa}}{101.3 \text{ kPa/atm}} \approx 1.290 \text{ atm} \][/tex]

2. Convert temperature to Kelvin:

[tex]\[ T = 24.6^{\circ} \text{C} + 273.15 = 297.75 \text{ K} \][/tex]

3. Using the given volume and gas constant:

[tex]\[ V = 5.27 \text{ L} \][/tex]
[tex]\[ R = 0.0821 \frac{L \cdot \text{atm}}{\text{mol} \cdot K} \][/tex]

Now, calculate the number of moles:

[tex]\[ n = \frac{(1.290 \text{ atm}) \times (5.27 \text{ L})}{(0.0821 \frac{L \cdot \text{atm}}{\text{mol} \cdot K}) \times (297.75 \text{ K})} \approx 0.278 \text{ mol} \][/tex]

Given the answer choices, the correct answer is:

A. 0.278 mol