Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Solve for x:

[tex]\[ 3x = 6x - 2 \][/tex]

---
as constant
\begin{tabular}{|l|l|}
\hline
Standard atmospheric pressure & [tex]\( R=0.0821 \frac{ L \cdot atm }{ mol \cdot K } \)[/tex] \\
\hline
Atmospheric pressure to Kelvin conversion & [tex]\( 1 \, atm = 101.3 \, kPa \)[/tex] \\
\hline
\end{tabular}

A volleyball is full of pressurized air. The air temperature is [tex]\( 24.6^{\circ} C \)[/tex]. The volleyball's absolute pressure is 130.75 kilopascals, and its volume is 5.27 liters. How many moles of air are inside the volleyball?

A. 0.278 mol
B. 3.37 mol
C. 3.59 mol
D. 25.2 mol
E. 28.0 mol

Sagot :

To determine the number of moles of air inside the volleyball, we will use the ideal gas law, which is given by the formula:

[tex]\[ PV = nRT \][/tex]

where:
- [tex]\( P \)[/tex] is the pressure,
- [tex]\( V \)[/tex] is the volume,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the universal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin.

First, let's identify the given values and convert them to the proper units:

1. Pressure ([tex]\( P \)[/tex]):
- Given pressure: 130.75 kilopascals (kPa)
- Conversion to atmospheres (atm): [tex]\( 1 \text{ atm} = 101.3 \text{ kPa} \)[/tex]
- Therefore, pressure in atmospheres: [tex]\( \frac{130.75 \text{ kPa}}{101.3 \text{ kPa/atm}} \)[/tex]

2. Temperature ([tex]\( T \)[/tex]):
- Given temperature: [tex]\( 24.6^{\circ} \text{C} \)[/tex]
- Conversion to Kelvin: [tex]\( T(K) = 24.6 + 273.15 \)[/tex]

3. Volume ([tex]\( V \)[/tex]):
- Given volume: 5.27 liters (no conversion needed)

4. Universal gas constant ([tex]\( R \)[/tex]):
- Given as [tex]\( 0.0821 \frac{L \cdot \text{atm}}{\text{mol} \cdot K} \)[/tex]

To find the number of moles ([tex]\( n \)[/tex]), we rearrange the ideal gas law to solve for [tex]\( n \)[/tex]:

[tex]\[ n = \frac{PV}{RT} \][/tex]

Now, substitute the given values into the equation:

1. Convert pressure to atmospheres:

[tex]\[ P = \frac{130.75 \text{ kPa}}{101.3 \text{ kPa/atm}} \approx 1.290 \text{ atm} \][/tex]

2. Convert temperature to Kelvin:

[tex]\[ T = 24.6^{\circ} \text{C} + 273.15 = 297.75 \text{ K} \][/tex]

3. Using the given volume and gas constant:

[tex]\[ V = 5.27 \text{ L} \][/tex]
[tex]\[ R = 0.0821 \frac{L \cdot \text{atm}}{\text{mol} \cdot K} \][/tex]

Now, calculate the number of moles:

[tex]\[ n = \frac{(1.290 \text{ atm}) \times (5.27 \text{ L})}{(0.0821 \frac{L \cdot \text{atm}}{\text{mol} \cdot K}) \times (297.75 \text{ K})} \approx 0.278 \text{ mol} \][/tex]

Given the answer choices, the correct answer is:

A. 0.278 mol