Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine [tex]\( B \cap A \)[/tex] (the intersection of sets [tex]\(B\)[/tex] and [tex]\(A\)[/tex]), we must identify all elements that are common to both sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
Let's start by listing the elements of each set:
- Set [tex]\(A\)[/tex] is [tex]\(\{2, 4, 6, 8, 10, 12\}\)[/tex].
- Set [tex]\(B\)[/tex] is [tex]\(\{3, 6, 9, 12, 15\}\)[/tex].
Now, we will compare these elements to find the common ones.
- The element [tex]\(2\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(4\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(6\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
- The element [tex]\(8\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(10\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(12\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
The elements that are common to both sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are [tex]\(6\)[/tex] and [tex]\(12\)[/tex].
Therefore, the intersection [tex]\( B \cap A \)[/tex] is:
[tex]\[ B \cap A = \{12, 6\} \][/tex]
Let's start by listing the elements of each set:
- Set [tex]\(A\)[/tex] is [tex]\(\{2, 4, 6, 8, 10, 12\}\)[/tex].
- Set [tex]\(B\)[/tex] is [tex]\(\{3, 6, 9, 12, 15\}\)[/tex].
Now, we will compare these elements to find the common ones.
- The element [tex]\(2\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(4\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(6\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
- The element [tex]\(8\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(10\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(12\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
The elements that are common to both sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are [tex]\(6\)[/tex] and [tex]\(12\)[/tex].
Therefore, the intersection [tex]\( B \cap A \)[/tex] is:
[tex]\[ B \cap A = \{12, 6\} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.