Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Question 3

Let set [tex]A = \{2,4,6,8,10,12\}[/tex] and set [tex]B = \{3,6,9,12,15\}[/tex]. What is [tex]B \cap A[/tex]?


Sagot :

To determine [tex]\( B \cap A \)[/tex] (the intersection of sets [tex]\(B\)[/tex] and [tex]\(A\)[/tex]), we must identify all elements that are common to both sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex].

Let's start by listing the elements of each set:

- Set [tex]\(A\)[/tex] is [tex]\(\{2, 4, 6, 8, 10, 12\}\)[/tex].
- Set [tex]\(B\)[/tex] is [tex]\(\{3, 6, 9, 12, 15\}\)[/tex].

Now, we will compare these elements to find the common ones.

- The element [tex]\(2\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(4\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(6\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
- The element [tex]\(8\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(10\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(12\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].

The elements that are common to both sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are [tex]\(6\)[/tex] and [tex]\(12\)[/tex].

Therefore, the intersection [tex]\( B \cap A \)[/tex] is:
[tex]\[ B \cap A = \{12, 6\} \][/tex]