Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine [tex]\( B \cap A \)[/tex] (the intersection of sets [tex]\(B\)[/tex] and [tex]\(A\)[/tex]), we must identify all elements that are common to both sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
Let's start by listing the elements of each set:
- Set [tex]\(A\)[/tex] is [tex]\(\{2, 4, 6, 8, 10, 12\}\)[/tex].
- Set [tex]\(B\)[/tex] is [tex]\(\{3, 6, 9, 12, 15\}\)[/tex].
Now, we will compare these elements to find the common ones.
- The element [tex]\(2\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(4\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(6\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
- The element [tex]\(8\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(10\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(12\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
The elements that are common to both sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are [tex]\(6\)[/tex] and [tex]\(12\)[/tex].
Therefore, the intersection [tex]\( B \cap A \)[/tex] is:
[tex]\[ B \cap A = \{12, 6\} \][/tex]
Let's start by listing the elements of each set:
- Set [tex]\(A\)[/tex] is [tex]\(\{2, 4, 6, 8, 10, 12\}\)[/tex].
- Set [tex]\(B\)[/tex] is [tex]\(\{3, 6, 9, 12, 15\}\)[/tex].
Now, we will compare these elements to find the common ones.
- The element [tex]\(2\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(4\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(6\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
- The element [tex]\(8\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(10\)[/tex] is in [tex]\(A\)[/tex] but not in [tex]\(B\)[/tex].
- The element [tex]\(12\)[/tex] is in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
The elements that are common to both sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are [tex]\(6\)[/tex] and [tex]\(12\)[/tex].
Therefore, the intersection [tex]\( B \cap A \)[/tex] is:
[tex]\[ B \cap A = \{12, 6\} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.