Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine whether the given equations represent a direct variation, we need to understand what direct variation means. Direct variation implies a relationship of the form [tex]\( y = kx \)[/tex] or [tex]\( x = ky \)[/tex], where [tex]\( k \)[/tex] is a constant.
Let's analyze each given equation step-by-step:
1. [tex]\( x = -1 \)[/tex]:
- This equation states that [tex]\( x \)[/tex] is always equal to [tex]\(-1\)[/tex], regardless of [tex]\( y \)[/tex]. This is not in the form [tex]\( y = kx \)[/tex] or [tex]\( x = ky \)[/tex], so it does not represent a direct variation.
2. [tex]\( y = \left(\frac{2}{7}\right) x \)[/tex]:
- This equation is of the form [tex]\( y = kx \)[/tex], where [tex]\( k = \frac{2}{7} \)[/tex]. This is a direct variation with [tex]\( k = \frac{2}{7} \)[/tex].
3. [tex]\( -0.5 x = y \)[/tex]:
- This equation can be rewritten as [tex]\( y = -0.5x \)[/tex], which is of the form [tex]\( y = kx \)[/tex] with [tex]\( k = -0.5 \)[/tex]. Therefore, this is a direct variation with [tex]\( k = -0.5 \)[/tex].
4. [tex]\( y = 2.2 x + 7 \)[/tex]:
- This equation includes an additional constant [tex]\(+7\)[/tex]. Therefore, it cannot be written in the form [tex]\( y = kx \)[/tex] because of the additional term. This is not a direct variation.
5. [tex]\( y = 4 \)[/tex]:
- This equation states that [tex]\( y \)[/tex] is always equal to 4, regardless of [tex]\( x \)[/tex]. This does not fit the form [tex]\( y = kx \)[/tex] or [tex]\( x = ky \)[/tex], so it is not a direct variation.
Now, I'll categorize the equations based on whether they represent direct variation or not.
Direct Variation:
- [tex]\( y = \left(\frac{2}{7}\right) x \)[/tex]
- [tex]\( -0.5 x = y \)[/tex]
Not Direct Variation:
- [tex]\( x = -1 \)[/tex]
- [tex]\( y = 2.2 x + 7 \)[/tex]
- [tex]\( y = 4 \)[/tex]
So, the complete sorted categories are:
- Direct Variation: [tex]\( y = \left(\frac{2}{7}\right) x \)[/tex], [tex]\( -0.5 x = y \)[/tex]
- Not Direct Variation: [tex]\( x = -1 \)[/tex], [tex]\( y = 2.2 x + 7 \)[/tex], [tex]\( y = 4 \)[/tex]
Let's analyze each given equation step-by-step:
1. [tex]\( x = -1 \)[/tex]:
- This equation states that [tex]\( x \)[/tex] is always equal to [tex]\(-1\)[/tex], regardless of [tex]\( y \)[/tex]. This is not in the form [tex]\( y = kx \)[/tex] or [tex]\( x = ky \)[/tex], so it does not represent a direct variation.
2. [tex]\( y = \left(\frac{2}{7}\right) x \)[/tex]:
- This equation is of the form [tex]\( y = kx \)[/tex], where [tex]\( k = \frac{2}{7} \)[/tex]. This is a direct variation with [tex]\( k = \frac{2}{7} \)[/tex].
3. [tex]\( -0.5 x = y \)[/tex]:
- This equation can be rewritten as [tex]\( y = -0.5x \)[/tex], which is of the form [tex]\( y = kx \)[/tex] with [tex]\( k = -0.5 \)[/tex]. Therefore, this is a direct variation with [tex]\( k = -0.5 \)[/tex].
4. [tex]\( y = 2.2 x + 7 \)[/tex]:
- This equation includes an additional constant [tex]\(+7\)[/tex]. Therefore, it cannot be written in the form [tex]\( y = kx \)[/tex] because of the additional term. This is not a direct variation.
5. [tex]\( y = 4 \)[/tex]:
- This equation states that [tex]\( y \)[/tex] is always equal to 4, regardless of [tex]\( x \)[/tex]. This does not fit the form [tex]\( y = kx \)[/tex] or [tex]\( x = ky \)[/tex], so it is not a direct variation.
Now, I'll categorize the equations based on whether they represent direct variation or not.
Direct Variation:
- [tex]\( y = \left(\frac{2}{7}\right) x \)[/tex]
- [tex]\( -0.5 x = y \)[/tex]
Not Direct Variation:
- [tex]\( x = -1 \)[/tex]
- [tex]\( y = 2.2 x + 7 \)[/tex]
- [tex]\( y = 4 \)[/tex]
So, the complete sorted categories are:
- Direct Variation: [tex]\( y = \left(\frac{2}{7}\right) x \)[/tex], [tex]\( -0.5 x = y \)[/tex]
- Not Direct Variation: [tex]\( x = -1 \)[/tex], [tex]\( y = 2.2 x + 7 \)[/tex], [tex]\( y = 4 \)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.