Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's break down the given problem step-by-step.
### Given Information:
1. The length of the rectangular prism (box) is given as 24 inches.
2. The height of the box is represented as [tex]\( x \)[/tex] inches.
3. The width of the box is 7 inches less than the height, which makes the width equal to [tex]\( x - 7 \)[/tex] inches.
### Volume of a Rectangular Prism:
The volume [tex]\( V \)[/tex] of a rectangular prism is given by the formula:
[tex]\[ V = \text{length} \times \text{width} \times \text{height} \][/tex]
Plugging in the given values:
[tex]\[ V = 24 \times (x - 7) \times x \][/tex]
### Simplifying the Volume Expression:
First, distribute [tex]\( x \)[/tex] across the terms inside the parenthesis:
[tex]\[ V = 24 \times (x^2 - 7x) \][/tex]
Then, distribute 24 inside the parenthesis:
[tex]\[ V = 24x^2 - 168x \][/tex]
So, the equation that models the volume of the box in terms of its height [tex]\( x \)[/tex] is:
[tex]\[ V = 24x^2 - 168x \][/tex]
### Can the Height of the Box be 15 inches?
To determine whether the height of the box can be 15 inches, we need to plug [tex]\( x = 15 \)[/tex] into the simplified volume expression and verify a few things:
1. Calculate the width when [tex]\( x = 15 \)[/tex]:
[tex]\[ \text{Width} = 15 - 7 = 8 \text{ inches} \][/tex]
2. Calculate the volume when [tex]\( x = 15 \)[/tex]:
[tex]\[ V = 24 \times 15^2 - 168 \times 15 \][/tex]
3. Ensure that the volume is non-negative (since volume cannot be negative):
Let's simplify this step further:
[tex]\[ 24 \times 15^2 - 168 \times 15 = 24 \times 225 - 2520 \][/tex]
[tex]\[ = 5400 - 2520 = 2880 \][/tex]
Since [tex]\( 2880 \)[/tex] is a positive value, the calculated volume is non-negative. This verifies that having a height of 15 inches results in a valid volume.
Thus, it is viable for the height of the box to be 15 inches.
### Summary:
1. Volume Formula Modeling the Box in terms of Height [tex]\( x \)[/tex]: [tex]\( 24x^2 - 168x \)[/tex]
2. Width when Height is 15 Inches: 8 inches
3. Viable for Height to be 15 Inches: Yes
Therefore:
- The equation modeling the volume of the box in terms of its height [tex]\( x \)[/tex] is [tex]\( V = 24x^2 - 168x \)[/tex].
- The width is 8 inches when the height is 15 inches.
- The height can be 15 inches since it results in a non-negative volume value.
### Given Information:
1. The length of the rectangular prism (box) is given as 24 inches.
2. The height of the box is represented as [tex]\( x \)[/tex] inches.
3. The width of the box is 7 inches less than the height, which makes the width equal to [tex]\( x - 7 \)[/tex] inches.
### Volume of a Rectangular Prism:
The volume [tex]\( V \)[/tex] of a rectangular prism is given by the formula:
[tex]\[ V = \text{length} \times \text{width} \times \text{height} \][/tex]
Plugging in the given values:
[tex]\[ V = 24 \times (x - 7) \times x \][/tex]
### Simplifying the Volume Expression:
First, distribute [tex]\( x \)[/tex] across the terms inside the parenthesis:
[tex]\[ V = 24 \times (x^2 - 7x) \][/tex]
Then, distribute 24 inside the parenthesis:
[tex]\[ V = 24x^2 - 168x \][/tex]
So, the equation that models the volume of the box in terms of its height [tex]\( x \)[/tex] is:
[tex]\[ V = 24x^2 - 168x \][/tex]
### Can the Height of the Box be 15 inches?
To determine whether the height of the box can be 15 inches, we need to plug [tex]\( x = 15 \)[/tex] into the simplified volume expression and verify a few things:
1. Calculate the width when [tex]\( x = 15 \)[/tex]:
[tex]\[ \text{Width} = 15 - 7 = 8 \text{ inches} \][/tex]
2. Calculate the volume when [tex]\( x = 15 \)[/tex]:
[tex]\[ V = 24 \times 15^2 - 168 \times 15 \][/tex]
3. Ensure that the volume is non-negative (since volume cannot be negative):
Let's simplify this step further:
[tex]\[ 24 \times 15^2 - 168 \times 15 = 24 \times 225 - 2520 \][/tex]
[tex]\[ = 5400 - 2520 = 2880 \][/tex]
Since [tex]\( 2880 \)[/tex] is a positive value, the calculated volume is non-negative. This verifies that having a height of 15 inches results in a valid volume.
Thus, it is viable for the height of the box to be 15 inches.
### Summary:
1. Volume Formula Modeling the Box in terms of Height [tex]\( x \)[/tex]: [tex]\( 24x^2 - 168x \)[/tex]
2. Width when Height is 15 Inches: 8 inches
3. Viable for Height to be 15 Inches: Yes
Therefore:
- The equation modeling the volume of the box in terms of its height [tex]\( x \)[/tex] is [tex]\( V = 24x^2 - 168x \)[/tex].
- The width is 8 inches when the height is 15 inches.
- The height can be 15 inches since it results in a non-negative volume value.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.