Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the decay rate [tex]\( k \)[/tex] for a radioactive substance given its half-life, we can use the formula for the decay constant in exponential decay processes:
[tex]\[ k = \frac{\ln(2)}{T_{\frac{1}{2}}} \][/tex]
where:
- [tex]\( \ln(2) \)[/tex] is the natural logarithm of 2, which is a constant approximately equal to 0.693.
- [tex]\( T_{\frac{1}{2}} \)[/tex] is the half-life of the substance in years.
Given the half-life [tex]\( T_{\frac{1}{2}} = 3552 \)[/tex] years, we substitute this value into the formula:
[tex]\[ k = \frac{\ln(2)}{3552} \][/tex]
[tex]\[ k = \frac{0.693}{3552} \][/tex]
By performing this division, we find:
[tex]\[ k \approx 0.000195016197 \][/tex]
Rounding this result to six decimal places, we get:
[tex]\[ k \approx 0.000195 \][/tex]
Therefore, the decay rate [tex]\( k \)[/tex] for the half-life of 3552 years is:
[tex]\[ k = 0.000195 \][/tex]
So, the completed table will be:
\begin{tabular}{|l|l|}
\hline
Half-Life & Decay Rate, [tex]\( k \)[/tex] \\
\hline
3552 years & 0.000195 \\
\hline
\end{tabular}
[tex]\[ k = \frac{\ln(2)}{T_{\frac{1}{2}}} \][/tex]
where:
- [tex]\( \ln(2) \)[/tex] is the natural logarithm of 2, which is a constant approximately equal to 0.693.
- [tex]\( T_{\frac{1}{2}} \)[/tex] is the half-life of the substance in years.
Given the half-life [tex]\( T_{\frac{1}{2}} = 3552 \)[/tex] years, we substitute this value into the formula:
[tex]\[ k = \frac{\ln(2)}{3552} \][/tex]
[tex]\[ k = \frac{0.693}{3552} \][/tex]
By performing this division, we find:
[tex]\[ k \approx 0.000195016197 \][/tex]
Rounding this result to six decimal places, we get:
[tex]\[ k \approx 0.000195 \][/tex]
Therefore, the decay rate [tex]\( k \)[/tex] for the half-life of 3552 years is:
[tex]\[ k = 0.000195 \][/tex]
So, the completed table will be:
\begin{tabular}{|l|l|}
\hline
Half-Life & Decay Rate, [tex]\( k \)[/tex] \\
\hline
3552 years & 0.000195 \\
\hline
\end{tabular}
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.