Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To fully understand Allen's function, let's break down the components of the given expression [tex]\( f(x) = 5\left(\frac{1}{10}\right)^x \)[/tex].
1. Initial Value at [tex]\( x=0 \)[/tex]:
At [tex]\( x=0 \)[/tex]:
[tex]\[ f(0) = 5 \left(\frac{1}{10}\right)^0 = 5 \times 1 = 5 \][/tex]
This confirms that the initial value of the function, or the y-intercept, is indeed [tex]\( 5 \)[/tex].
2. Rate of Decay:
The expression given is [tex]\( \left(\frac{1}{10}\right)^x \)[/tex], which indicates an exponential decay because the base [tex]\(\frac{1}{10}\)[/tex] is less than 1.
The term [tex]\(\frac{1}{10}\)[/tex] can also be represented as [tex]\( 0.1 \)[/tex]. This highlights that the rate of decay is [tex]\( 0.1 \)[/tex] or 10%.
3. Exponential Function Form:
An exponential decay function can generally be expressed as:
[tex]\[ f(x) = \text{initial value} \times (\text{decay rate})^x \][/tex]
Here, the initial value is [tex]\( 5 \)[/tex], and the decay rate is [tex]\( \frac{1}{10} \)[/tex] (or 0.1).
Completing the statement:
Allen's function is an exponential decay function because the exponential function [tex]\( f \)[/tex] should have a base equal to the expression [tex]\( 0.1 \)[/tex] (or [tex]\(\frac{1}{10}\)[/tex]) and an initial value of [tex]\( 5 \)[/tex].
So, the completed statement is:
Allen's function is an exponential decay function because the exponential function [tex]\( f \)[/tex] should have a base equal to the expression [tex]\( 0.1 \)[/tex] and an initial value of [tex]\( 5 \)[/tex].
1. Initial Value at [tex]\( x=0 \)[/tex]:
At [tex]\( x=0 \)[/tex]:
[tex]\[ f(0) = 5 \left(\frac{1}{10}\right)^0 = 5 \times 1 = 5 \][/tex]
This confirms that the initial value of the function, or the y-intercept, is indeed [tex]\( 5 \)[/tex].
2. Rate of Decay:
The expression given is [tex]\( \left(\frac{1}{10}\right)^x \)[/tex], which indicates an exponential decay because the base [tex]\(\frac{1}{10}\)[/tex] is less than 1.
The term [tex]\(\frac{1}{10}\)[/tex] can also be represented as [tex]\( 0.1 \)[/tex]. This highlights that the rate of decay is [tex]\( 0.1 \)[/tex] or 10%.
3. Exponential Function Form:
An exponential decay function can generally be expressed as:
[tex]\[ f(x) = \text{initial value} \times (\text{decay rate})^x \][/tex]
Here, the initial value is [tex]\( 5 \)[/tex], and the decay rate is [tex]\( \frac{1}{10} \)[/tex] (or 0.1).
Completing the statement:
Allen's function is an exponential decay function because the exponential function [tex]\( f \)[/tex] should have a base equal to the expression [tex]\( 0.1 \)[/tex] (or [tex]\(\frac{1}{10}\)[/tex]) and an initial value of [tex]\( 5 \)[/tex].
So, the completed statement is:
Allen's function is an exponential decay function because the exponential function [tex]\( f \)[/tex] should have a base equal to the expression [tex]\( 0.1 \)[/tex] and an initial value of [tex]\( 5 \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.