Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the compound absolute value inequality [tex]\( 3 \leq |x+2| \leq 6 \)[/tex], it is essential to consider the properties and implications of absolute value.
The absolute value inequality [tex]\( |x+2| \leq 6 \)[/tex] can be separated into:
1. [tex]\( x+2 \leq 6 \)[/tex]
2. [tex]\( x+2 \geq -6 \)[/tex]
The absolute value inequality [tex]\( |x+2| \geq 3 \)[/tex] can be separated into:
1. [tex]\( x+2 \leq -3 \)[/tex]
2. [tex]\( x+2 \geq 3 \)[/tex]
So, the inequalities that can be used to determine the solution to the given absolute value inequality are:
- [tex]\( x+2 \leq 6 \)[/tex]
- [tex]\( x+2 \geq -6 \)[/tex]
- [tex]\( x+2 \leq -3 \)[/tex]
- [tex]\( x+2 \geq 3 \)[/tex]
Hence, the correct answers are:
- [tex]\( x+2 \leq 6 \)[/tex]
- [tex]\( x+2 \geq -6 \)[/tex]
- [tex]\( x+2 \leq -3 \)[/tex]
- [tex]\( x+2 \geq 3 \)[/tex]
The absolute value inequality [tex]\( |x+2| \leq 6 \)[/tex] can be separated into:
1. [tex]\( x+2 \leq 6 \)[/tex]
2. [tex]\( x+2 \geq -6 \)[/tex]
The absolute value inequality [tex]\( |x+2| \geq 3 \)[/tex] can be separated into:
1. [tex]\( x+2 \leq -3 \)[/tex]
2. [tex]\( x+2 \geq 3 \)[/tex]
So, the inequalities that can be used to determine the solution to the given absolute value inequality are:
- [tex]\( x+2 \leq 6 \)[/tex]
- [tex]\( x+2 \geq -6 \)[/tex]
- [tex]\( x+2 \leq -3 \)[/tex]
- [tex]\( x+2 \geq 3 \)[/tex]
Hence, the correct answers are:
- [tex]\( x+2 \leq 6 \)[/tex]
- [tex]\( x+2 \geq -6 \)[/tex]
- [tex]\( x+2 \leq -3 \)[/tex]
- [tex]\( x+2 \geq 3 \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.