Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Select the correct answer.

What is the solution to this equation?

[tex] 2\left(\frac{1}{49}\right)^{x-2}=14 [/tex]

A. 3
B. [tex] -\frac{5}{2} [/tex]
C. [tex] \frac{3}{2} [/tex]
D. [tex] \frac{5}{2} [/tex]


Sagot :

To solve the equation
[tex]\[ 2\left(\frac{1}{49}\right)^{x-2} = 14, \][/tex]
we need to isolate the variable [tex]\( x \)[/tex]. Here is a step-by-step approach:

1. Isolate the exponential expression:

Begin by dividing both sides of the equation by 2 to simplify:
[tex]\[ \left(\frac{1}{49}\right)^{x-2} = \frac{14}{2} = 7. \][/tex]

2. Transform the exponential base:

Recall that [tex]\( \frac{1}{49} \)[/tex] can be written as [tex]\( 49^{-1} \)[/tex] and [tex]\( 49 \)[/tex] is equivalently [tex]\( 7^2 \)[/tex]:
[tex]\[ \left(49^{-1}\right)^{x-2} = 7. \][/tex]

Simplify the left side:
[tex]\[ (7^{-2})^{x-2} = 7. \][/tex]
Which simplifies further:
[tex]\[ 7^{-2(x-2)} = 7. \][/tex]

3. Equate the exponents (since the bases are the same):

The equation [tex]\( 7^{-2(x-2)} = 7^1 \)[/tex] implies that the exponents must be equal:
[tex]\[ -2(x-2) = 1. \][/tex]

4. Solve for [tex]\( x \)[/tex]:

First, distribute the [tex]\(-2\)[/tex]:
[tex]\[ -2x + 4 = 1. \][/tex]
Next, rearrange to solve for [tex]\( x \)[/tex]:
[tex]\[ -2x = 1 - 4, \][/tex]
[tex]\[ -2x = -3, \][/tex]
[tex]\[ x = \frac{-3}{-2} = \frac{3}{2}. \][/tex]

Therefore, the correct solution to the equation is [tex]\( \boxed{\frac{3}{2}} \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.