Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the equation
[tex]\[ 2\left(\frac{1}{49}\right)^{x-2} = 14, \][/tex]
we need to isolate the variable [tex]\( x \)[/tex]. Here is a step-by-step approach:
1. Isolate the exponential expression:
Begin by dividing both sides of the equation by 2 to simplify:
[tex]\[ \left(\frac{1}{49}\right)^{x-2} = \frac{14}{2} = 7. \][/tex]
2. Transform the exponential base:
Recall that [tex]\( \frac{1}{49} \)[/tex] can be written as [tex]\( 49^{-1} \)[/tex] and [tex]\( 49 \)[/tex] is equivalently [tex]\( 7^2 \)[/tex]:
[tex]\[ \left(49^{-1}\right)^{x-2} = 7. \][/tex]
Simplify the left side:
[tex]\[ (7^{-2})^{x-2} = 7. \][/tex]
Which simplifies further:
[tex]\[ 7^{-2(x-2)} = 7. \][/tex]
3. Equate the exponents (since the bases are the same):
The equation [tex]\( 7^{-2(x-2)} = 7^1 \)[/tex] implies that the exponents must be equal:
[tex]\[ -2(x-2) = 1. \][/tex]
4. Solve for [tex]\( x \)[/tex]:
First, distribute the [tex]\(-2\)[/tex]:
[tex]\[ -2x + 4 = 1. \][/tex]
Next, rearrange to solve for [tex]\( x \)[/tex]:
[tex]\[ -2x = 1 - 4, \][/tex]
[tex]\[ -2x = -3, \][/tex]
[tex]\[ x = \frac{-3}{-2} = \frac{3}{2}. \][/tex]
Therefore, the correct solution to the equation is [tex]\( \boxed{\frac{3}{2}} \)[/tex].
[tex]\[ 2\left(\frac{1}{49}\right)^{x-2} = 14, \][/tex]
we need to isolate the variable [tex]\( x \)[/tex]. Here is a step-by-step approach:
1. Isolate the exponential expression:
Begin by dividing both sides of the equation by 2 to simplify:
[tex]\[ \left(\frac{1}{49}\right)^{x-2} = \frac{14}{2} = 7. \][/tex]
2. Transform the exponential base:
Recall that [tex]\( \frac{1}{49} \)[/tex] can be written as [tex]\( 49^{-1} \)[/tex] and [tex]\( 49 \)[/tex] is equivalently [tex]\( 7^2 \)[/tex]:
[tex]\[ \left(49^{-1}\right)^{x-2} = 7. \][/tex]
Simplify the left side:
[tex]\[ (7^{-2})^{x-2} = 7. \][/tex]
Which simplifies further:
[tex]\[ 7^{-2(x-2)} = 7. \][/tex]
3. Equate the exponents (since the bases are the same):
The equation [tex]\( 7^{-2(x-2)} = 7^1 \)[/tex] implies that the exponents must be equal:
[tex]\[ -2(x-2) = 1. \][/tex]
4. Solve for [tex]\( x \)[/tex]:
First, distribute the [tex]\(-2\)[/tex]:
[tex]\[ -2x + 4 = 1. \][/tex]
Next, rearrange to solve for [tex]\( x \)[/tex]:
[tex]\[ -2x = 1 - 4, \][/tex]
[tex]\[ -2x = -3, \][/tex]
[tex]\[ x = \frac{-3}{-2} = \frac{3}{2}. \][/tex]
Therefore, the correct solution to the equation is [tex]\( \boxed{\frac{3}{2}} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.