Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine how to shift the graph of [tex]\( f(x) = |x| \)[/tex] to obtain the graph of [tex]\( g(x) = |x| - 9 \)[/tex], we need to analyze the transformation applied to [tex]\( f(x) \)[/tex].
1. Understand the basic graph of [tex]\( f(x) = |x| \)[/tex]:
The function [tex]\( f(x) = |x| \)[/tex] represents the absolute value function, which is V-shaped and symmetric about the y-axis. The vertex of the graph is at the origin (0,0), and it opens upwards.
2. Analyze the transformation to get [tex]\( g(x) = |x| - 9 \)[/tex]:
The function [tex]\( g(x) = |x| - 9 \)[/tex] can be interpreted as taking the original function [tex]\( f(x) = |x| \)[/tex] and subtracting 9 from it.
3. Interpret the effect of the subtraction:
Subtracting 9 from the function [tex]\( f(x) = |x| \)[/tex] translates the entire graph downward by 9 units. This is because, for every value of [tex]\( x \)[/tex], the output of [tex]\( g(x) \)[/tex] is 9 less than the output of [tex]\( f(x) \)[/tex]. Specifically, the new vertex of the graph shifts from (0,0) to (0,-9).
4. Determine the direction of the shift:
Since the subtraction leads to every point on the graph of [tex]\( f(x) \)[/tex] being moved 9 units down, the correct direction of the shift is down.
Hence, the graph of [tex]\( f(x) = |x| \)[/tex] must be shifted downwards to produce the graph of [tex]\( g(x) = |x| - 9 \)[/tex].
The correct answer is:
D. down
1. Understand the basic graph of [tex]\( f(x) = |x| \)[/tex]:
The function [tex]\( f(x) = |x| \)[/tex] represents the absolute value function, which is V-shaped and symmetric about the y-axis. The vertex of the graph is at the origin (0,0), and it opens upwards.
2. Analyze the transformation to get [tex]\( g(x) = |x| - 9 \)[/tex]:
The function [tex]\( g(x) = |x| - 9 \)[/tex] can be interpreted as taking the original function [tex]\( f(x) = |x| \)[/tex] and subtracting 9 from it.
3. Interpret the effect of the subtraction:
Subtracting 9 from the function [tex]\( f(x) = |x| \)[/tex] translates the entire graph downward by 9 units. This is because, for every value of [tex]\( x \)[/tex], the output of [tex]\( g(x) \)[/tex] is 9 less than the output of [tex]\( f(x) \)[/tex]. Specifically, the new vertex of the graph shifts from (0,0) to (0,-9).
4. Determine the direction of the shift:
Since the subtraction leads to every point on the graph of [tex]\( f(x) \)[/tex] being moved 9 units down, the correct direction of the shift is down.
Hence, the graph of [tex]\( f(x) = |x| \)[/tex] must be shifted downwards to produce the graph of [tex]\( g(x) = |x| - 9 \)[/tex].
The correct answer is:
D. down
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.