Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine how to shift the graph of [tex]\( f(x) = |x| \)[/tex] to obtain the graph of [tex]\( g(x) = |x| - 9 \)[/tex], we need to analyze the transformation applied to [tex]\( f(x) \)[/tex].
1. Understand the basic graph of [tex]\( f(x) = |x| \)[/tex]:
The function [tex]\( f(x) = |x| \)[/tex] represents the absolute value function, which is V-shaped and symmetric about the y-axis. The vertex of the graph is at the origin (0,0), and it opens upwards.
2. Analyze the transformation to get [tex]\( g(x) = |x| - 9 \)[/tex]:
The function [tex]\( g(x) = |x| - 9 \)[/tex] can be interpreted as taking the original function [tex]\( f(x) = |x| \)[/tex] and subtracting 9 from it.
3. Interpret the effect of the subtraction:
Subtracting 9 from the function [tex]\( f(x) = |x| \)[/tex] translates the entire graph downward by 9 units. This is because, for every value of [tex]\( x \)[/tex], the output of [tex]\( g(x) \)[/tex] is 9 less than the output of [tex]\( f(x) \)[/tex]. Specifically, the new vertex of the graph shifts from (0,0) to (0,-9).
4. Determine the direction of the shift:
Since the subtraction leads to every point on the graph of [tex]\( f(x) \)[/tex] being moved 9 units down, the correct direction of the shift is down.
Hence, the graph of [tex]\( f(x) = |x| \)[/tex] must be shifted downwards to produce the graph of [tex]\( g(x) = |x| - 9 \)[/tex].
The correct answer is:
D. down
1. Understand the basic graph of [tex]\( f(x) = |x| \)[/tex]:
The function [tex]\( f(x) = |x| \)[/tex] represents the absolute value function, which is V-shaped and symmetric about the y-axis. The vertex of the graph is at the origin (0,0), and it opens upwards.
2. Analyze the transformation to get [tex]\( g(x) = |x| - 9 \)[/tex]:
The function [tex]\( g(x) = |x| - 9 \)[/tex] can be interpreted as taking the original function [tex]\( f(x) = |x| \)[/tex] and subtracting 9 from it.
3. Interpret the effect of the subtraction:
Subtracting 9 from the function [tex]\( f(x) = |x| \)[/tex] translates the entire graph downward by 9 units. This is because, for every value of [tex]\( x \)[/tex], the output of [tex]\( g(x) \)[/tex] is 9 less than the output of [tex]\( f(x) \)[/tex]. Specifically, the new vertex of the graph shifts from (0,0) to (0,-9).
4. Determine the direction of the shift:
Since the subtraction leads to every point on the graph of [tex]\( f(x) \)[/tex] being moved 9 units down, the correct direction of the shift is down.
Hence, the graph of [tex]\( f(x) = |x| \)[/tex] must be shifted downwards to produce the graph of [tex]\( g(x) = |x| - 9 \)[/tex].
The correct answer is:
D. down
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.