Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Given that [tex]\(\triangle RST \sim \triangle RYX\)[/tex] by the SSS (Side-Side-Side) similarity theorem, this means that all corresponding sides of the triangles are proportional and corresponding angles are equal.
The ratios of the corresponding sides are equal since the triangles are similar. The sides corresponding to [tex]\(RT, RX\)[/tex] and [tex]\(RS\)[/tex] in [tex]\(\triangle RYX\)[/tex] are [tex]\(ST, YX\)[/tex] and [tex]\(RY\)[/tex] respectively.
To find the ratio that is also equal to [tex]\(\frac{RT}{RX}\)[/tex] and [tex]\(\frac{RS}{RY}\)[/tex], we need to look at the sides that will match the proportions.
Let's consider the ratios given:
1. [tex]\(\frac{XY}{TS}\)[/tex]
2. [tex]\(\frac{SY}{RY}\)[/tex]
3. [tex]\(\frac{RX}{XT}\)[/tex]
4. [tex]\(\frac{ST}{YX}\)[/tex]
Given the similar triangles, the corresponding side to [tex]\(RT\)[/tex] in [tex]\(\triangle RST\)[/tex] is [tex]\(ST\)[/tex] in [tex]\(\triangle RYX\)[/tex] and the corresponding side to [tex]\(RX\)[/tex] in [tex]\(\triangle RST\)[/tex] is [tex]\(YX\)[/tex] in [tex]\(\triangle RYX\)[/tex].
Thus, the ratio [tex]\(\frac{ST}{YX}\)[/tex] is the correct one because:
[tex]\[ \frac{RT}{RX} = \frac{RS}{RY} = \frac{ST}{YX} \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{\frac{ST}{YX}} \][/tex]
The ratios of the corresponding sides are equal since the triangles are similar. The sides corresponding to [tex]\(RT, RX\)[/tex] and [tex]\(RS\)[/tex] in [tex]\(\triangle RYX\)[/tex] are [tex]\(ST, YX\)[/tex] and [tex]\(RY\)[/tex] respectively.
To find the ratio that is also equal to [tex]\(\frac{RT}{RX}\)[/tex] and [tex]\(\frac{RS}{RY}\)[/tex], we need to look at the sides that will match the proportions.
Let's consider the ratios given:
1. [tex]\(\frac{XY}{TS}\)[/tex]
2. [tex]\(\frac{SY}{RY}\)[/tex]
3. [tex]\(\frac{RX}{XT}\)[/tex]
4. [tex]\(\frac{ST}{YX}\)[/tex]
Given the similar triangles, the corresponding side to [tex]\(RT\)[/tex] in [tex]\(\triangle RST\)[/tex] is [tex]\(ST\)[/tex] in [tex]\(\triangle RYX\)[/tex] and the corresponding side to [tex]\(RX\)[/tex] in [tex]\(\triangle RST\)[/tex] is [tex]\(YX\)[/tex] in [tex]\(\triangle RYX\)[/tex].
Thus, the ratio [tex]\(\frac{ST}{YX}\)[/tex] is the correct one because:
[tex]\[ \frac{RT}{RX} = \frac{RS}{RY} = \frac{ST}{YX} \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{\frac{ST}{YX}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.