Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

[tex]$\triangle RST \sim \triangle RYX$[/tex] by the SSS similarity theorem.

Which ratio is also equal to [tex]$\frac{RT}{RX}$[/tex] and [tex]$\frac{RS}{RY}$[/tex]?

A. [tex]$\frac{XY}{TS}$[/tex]
B. [tex]$\frac{SY}{RY}$[/tex]
C. [tex]$\frac{RX}{XT}$[/tex]
D. [tex]$\frac{ST}{YX}$[/tex]


Sagot :

Given that [tex]\(\triangle RST \sim \triangle RYX\)[/tex] by the SSS (Side-Side-Side) similarity theorem, this means that all corresponding sides of the triangles are proportional and corresponding angles are equal.

The ratios of the corresponding sides are equal since the triangles are similar. The sides corresponding to [tex]\(RT, RX\)[/tex] and [tex]\(RS\)[/tex] in [tex]\(\triangle RYX\)[/tex] are [tex]\(ST, YX\)[/tex] and [tex]\(RY\)[/tex] respectively.

To find the ratio that is also equal to [tex]\(\frac{RT}{RX}\)[/tex] and [tex]\(\frac{RS}{RY}\)[/tex], we need to look at the sides that will match the proportions.

Let's consider the ratios given:
1. [tex]\(\frac{XY}{TS}\)[/tex]
2. [tex]\(\frac{SY}{RY}\)[/tex]
3. [tex]\(\frac{RX}{XT}\)[/tex]
4. [tex]\(\frac{ST}{YX}\)[/tex]

Given the similar triangles, the corresponding side to [tex]\(RT\)[/tex] in [tex]\(\triangle RST\)[/tex] is [tex]\(ST\)[/tex] in [tex]\(\triangle RYX\)[/tex] and the corresponding side to [tex]\(RX\)[/tex] in [tex]\(\triangle RST\)[/tex] is [tex]\(YX\)[/tex] in [tex]\(\triangle RYX\)[/tex].

Thus, the ratio [tex]\(\frac{ST}{YX}\)[/tex] is the correct one because:

[tex]\[ \frac{RT}{RX} = \frac{RS}{RY} = \frac{ST}{YX} \][/tex]

Therefore, the answer is:

[tex]\[ \boxed{\frac{ST}{YX}} \][/tex]