Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the final volume of the gas in the balloon, we can use the Combined Gas Law, which relates the pressure, volume, and temperature of a gas in two different states:
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
Where:
- [tex]\( P_1 \)[/tex] and [tex]\( P_2 \)[/tex] are the initial and final pressures, respectively.
- [tex]\( V_1 \)[/tex] and [tex]\( V_2 \)[/tex] are the initial and final volumes, respectively.
- [tex]\( T_1 \)[/tex] and [tex]\( T_2 \)[/tex] are the initial and final temperatures, respectively.
### Given Values:
- Initial volume ([tex]\( V_1 \)[/tex]): 25.8 L
- Initial temperature ([tex]\( T_1 \)[/tex]): 353 K
- Initial pressure ([tex]\( P_1 \)[/tex]): 2575 mm Hg
- Final pressure ([tex]\( P_2 \)[/tex]): 1.35 atm
- Final temperature ([tex]\( T_2 \)[/tex]): 253 K
### Step-by-Step Solution:
1. Convert Initial Pressure to the Same Units as Final Pressure (atm):
- We know that [tex]\( 1 \text{ atm} = 760 \text{ mm Hg} \)[/tex].
- Hence, [tex]\( P_1 \)[/tex] in atm:
[tex]\[ P_1 = \frac{2575 \text{ mm Hg}}{760 \text{ mm Hg/atm}} \approx 3.388 \text{ atm} \][/tex]
2. Apply the Combined Gas Law to Solve for the Final Volume ([tex]\( V_2 \)[/tex]):
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
Re-arrange for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} \][/tex]
3. Substitute the Known Values:
[tex]\[ V_2 = \frac{(3.388 \text{ atm}) (25.8 \text{ L}) (253 \text{ K})}{(353 \text{ K}) (1.35 \text{ atm})} \][/tex]
Simplify and calculate [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 \approx 46.408 \text{ L} \][/tex]
Therefore, the volume of gas the balloon will contain at 1.35 atm and 253 K is approximately 46.408 L. Hence, the closest option to this result is:
45.8 L
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
Where:
- [tex]\( P_1 \)[/tex] and [tex]\( P_2 \)[/tex] are the initial and final pressures, respectively.
- [tex]\( V_1 \)[/tex] and [tex]\( V_2 \)[/tex] are the initial and final volumes, respectively.
- [tex]\( T_1 \)[/tex] and [tex]\( T_2 \)[/tex] are the initial and final temperatures, respectively.
### Given Values:
- Initial volume ([tex]\( V_1 \)[/tex]): 25.8 L
- Initial temperature ([tex]\( T_1 \)[/tex]): 353 K
- Initial pressure ([tex]\( P_1 \)[/tex]): 2575 mm Hg
- Final pressure ([tex]\( P_2 \)[/tex]): 1.35 atm
- Final temperature ([tex]\( T_2 \)[/tex]): 253 K
### Step-by-Step Solution:
1. Convert Initial Pressure to the Same Units as Final Pressure (atm):
- We know that [tex]\( 1 \text{ atm} = 760 \text{ mm Hg} \)[/tex].
- Hence, [tex]\( P_1 \)[/tex] in atm:
[tex]\[ P_1 = \frac{2575 \text{ mm Hg}}{760 \text{ mm Hg/atm}} \approx 3.388 \text{ atm} \][/tex]
2. Apply the Combined Gas Law to Solve for the Final Volume ([tex]\( V_2 \)[/tex]):
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
Re-arrange for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} \][/tex]
3. Substitute the Known Values:
[tex]\[ V_2 = \frac{(3.388 \text{ atm}) (25.8 \text{ L}) (253 \text{ K})}{(353 \text{ K}) (1.35 \text{ atm})} \][/tex]
Simplify and calculate [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 \approx 46.408 \text{ L} \][/tex]
Therefore, the volume of gas the balloon will contain at 1.35 atm and 253 K is approximately 46.408 L. Hence, the closest option to this result is:
45.8 L
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.