Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To write the given rational expression in its lowest terms, let's follow a step-by-step simplification process. The rational expression given is:
[tex]\[ \frac{q^2 - 49}{q^2 - 14q + 49} \][/tex]
### Step 1: Factor the numerator and denominator
First, we factor both the numerator and the denominator.
#### Factor the numerator [tex]\( q^2 - 49 \)[/tex]
Notice that [tex]\( q^2 - 49 \)[/tex] is a difference of squares:
[tex]\[ q^2 - 49 = (q + 7)(q - 7) \][/tex]
#### Factor the denominator [tex]\( q^2 - 14q + 49 \)[/tex]
Observe that [tex]\( q^2 - 14q + 49 \)[/tex] is a perfect square trinomial:
[tex]\[ q^2 - 14q + 49 = (q - 7)^2 \][/tex]
### Step 2: Rewrite the rational expression using the factors
Substitute the factored forms of the numerator and the denominator:
[tex]\[ \frac{q^2 - 49}{q^2 - 14q + 49} = \frac{(q + 7)(q - 7)}{(q - 7)^2} \][/tex]
### Step 3: Simplify the rational expression
To simplify the rational expression, cancel the common factors in the numerator and the denominator. The common factor here is [tex]\( q - 7 \)[/tex]:
[tex]\[ \frac{(q + 7)(q - 7)}{(q - 7)(q - 7)} = \frac{q + 7}{q - 7} \][/tex]
Thus, the simplified form of the given rational expression is:
[tex]\[ \frac{q + 7}{q - 7} \][/tex]
In conclusion, the expression [tex]\( \frac{q^2 - 49}{q^2 - 14q + 49} \)[/tex] simplifies to [tex]\( \frac{q + 7}{q - 7} \)[/tex].
[tex]\[ \frac{q^2 - 49}{q^2 - 14q + 49} \][/tex]
### Step 1: Factor the numerator and denominator
First, we factor both the numerator and the denominator.
#### Factor the numerator [tex]\( q^2 - 49 \)[/tex]
Notice that [tex]\( q^2 - 49 \)[/tex] is a difference of squares:
[tex]\[ q^2 - 49 = (q + 7)(q - 7) \][/tex]
#### Factor the denominator [tex]\( q^2 - 14q + 49 \)[/tex]
Observe that [tex]\( q^2 - 14q + 49 \)[/tex] is a perfect square trinomial:
[tex]\[ q^2 - 14q + 49 = (q - 7)^2 \][/tex]
### Step 2: Rewrite the rational expression using the factors
Substitute the factored forms of the numerator and the denominator:
[tex]\[ \frac{q^2 - 49}{q^2 - 14q + 49} = \frac{(q + 7)(q - 7)}{(q - 7)^2} \][/tex]
### Step 3: Simplify the rational expression
To simplify the rational expression, cancel the common factors in the numerator and the denominator. The common factor here is [tex]\( q - 7 \)[/tex]:
[tex]\[ \frac{(q + 7)(q - 7)}{(q - 7)(q - 7)} = \frac{q + 7}{q - 7} \][/tex]
Thus, the simplified form of the given rational expression is:
[tex]\[ \frac{q + 7}{q - 7} \][/tex]
In conclusion, the expression [tex]\( \frac{q^2 - 49}{q^2 - 14q + 49} \)[/tex] simplifies to [tex]\( \frac{q + 7}{q - 7} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.